Monoclonal immunoglobulin deposition disease

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search


Haematolymphoid Tumours (WHO Classification, 5th ed.)

editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Light Chain and Heavy Chain Deposition Disease.

(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)

Primary Author(s)*

Chen Yang, MD, PhD, University of Michigan

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category B-cell lymphoid proliferations and lymphomas
Family Plasma cell neoplasms and other diseases with paraproteins
Type Diseases with monoclonal immunoglobulin deposition
Subtype(s) Monoclonal immunoglobulin deposition disease

WHO Essential and Desirable Genetic Diagnostic Criteria

(Instructions: The table will have the diagnostic criteria from the WHO book autocompleted; remove any non-genetics related criteria. If applicable, add text about other classification systems that define this entity and specify how the genetics-related criteria differ.)

WHO Essential Criteria (Genetics)*
WHO Desirable Criteria (Genetics)*
Other Classification

*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.

Related Terminology

(Instructions: The table will have the related terminology from the WHO autocompleted.)

Acceptable
Not Recommended

Gene Rearrangements

Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE: ABL1 EXAMPLE: BCR::ABL1 EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: Common (CML) EXAMPLE: D, P, T EXAMPLE: Yes (WHO, NCCN) EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).

EXAMPLE: CIC EXAMPLE: CIC::DUX4 EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. EXAMPLE: t(4;19)(q25;q13) EXAMPLE: Common (CIC-rearranged sarcoma) EXAMPLE: D EXAMPLE:

DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).

EXAMPLE: ALK EXAMPLE: ELM4::ALK


Other fusion partners include KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1

EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. EXAMPLE: N/A EXAMPLE: Rare (Lung adenocarcinoma) EXAMPLE: T EXAMPLE:

Both balanced and unbalanced forms are observed by FISH (add references).

EXAMPLE: ABL1 EXAMPLE: N/A EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. EXAMPLE: N/A EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) EXAMPLE: D, P, T
editv4:Chromosomal Rearrangements (Gene Fusions)
The content below was from the old template. Please incorporate above.
  • There is limited information on the genomic abnormalities of the plasma cells in light chain and heavy chain deposition disease
  • Patients with PCM presumably have similar genomic abnormalities to myelomas without Ig deposition, perhaps with a different prevalence
  • In one study[1], t(11;14)(q13;q32) IGH/CCND1 fusion is detected as the most common fusion (nearly 50%), comparing to only 15-20% in myeloma without Ig deposition
End of V4 Section


editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).
Please incorporate this section into the relevant tables found in:
  • Chromosomal Rearrangements (Gene Fusions)
  • Individual Region Genomic Gain/Loss/LOH
  • Characteristic Chromosomal Patterns
  • Gene Mutations (SNV/INDEL)
  • Due to limited studies, no genetic abnormalities are prognostic or predictive of treatment response
  • FISH detection of the potentially frequent t(11;14) IGH/CCND1 fusion in association with BCL2 overexpression may help guide the application of BCL2 blocking agents including venetoclax[2][3][4]
End of V4 Section

Individual Region Genomic Gain/Loss/LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE: No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE:

Common recurrent secondary finding for t(8;21) (add references).

EXAMPLE:

17

EXAMPLE: Amp EXAMPLE:

17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]

EXAMPLE:

ERBB2

EXAMPLE: D, P, T EXAMPLE:

Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.

editv4:Genomic Gain/Loss/LOH
The content below was from the old template. Please incorporate above.
End of V4 Section

Characteristic Chromosomal or Other Global Mutational Patterns

Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). EXAMPLE: Common (Oligodendroglioma) EXAMPLE: D, P
EXAMPLE:

Microsatellite instability - hypermutated

EXAMPLE: Common (Endometrial carcinoma) EXAMPLE: P, T
editv4:Characteristic Chromosomal Aberrations / Patterns
The content below was from the old template. Please incorporate above.
  • Patients with PCM presumably have similar genomic abnormalities to myelomas without Ig deposition, perhaps with a different prevalence
  • In one study[1], t(11;14)(q13;q32) IGH/CCND1 fusion is detected as the most common fusion (nearly 50%), comparing to only 15-20% in myeloma without Ig deposition
  • In the same study[1], hyperdiploidy is detected only at 16%, comparing to ~60% in myeloma without Ig deposition
End of V4 Section

Gene Mutations (SNV/INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:EGFR


EXAMPLE: Exon 18-21 activating mutations EXAMPLE: Oncogene EXAMPLE: Common (lung cancer) EXAMPLE: T EXAMPLE: Yes (NCCN) EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
EXAMPLE: TP53; Variable LOF mutations


EXAMPLE: Variable LOF mutations EXAMPLE: Tumor Supressor Gene EXAMPLE: Common (breast cancer) EXAMPLE: P EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
EXAMPLE: BRAF; Activating mutations EXAMPLE: Activating mutations EXAMPLE: Oncogene EXAMPLE: Common (melanoma) EXAMPLE: T

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

editv4:Gene Mutations (SNV/INDEL)
The content below was from the old template. Please incorporate above.
End of V4 Section

Epigenomic Alterations

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program
editv4:Genes and Main Pathways Involved
The content below was from the old template. Please incorporate above.
End of V4 Section

Genetic Diagnostic Testing Methods

Testing methods include those needed to diagnose the underlying condition, as well as those specifically needed to detect the offending Ig in liquid samples and tissues. The following methods of testing have been reported[5][6][7][1][8]:

  • Diagnosis relies on detection of monoclonal Ig deposition in tissues biopsy; fine needle aspiration is not enough for diagnosis
  • Because kidney is almost always affected, detecting linear Ig deposits predominantly along TBM and GBM under immunofluorescence (IF) and/or electron microscopy studies of the kidney biopsy is diagnostic
  • Diagnosis in other tissues relies more on immunohistochemistry, as electron microscopy is rarely used
  • Serum protein electrophoresis (SPEP), urine protein electrophoresis (UPEP), immunofixation, and serum free light-chain (SFLC), should be performed to identify the monoclonal Ig; abnormal rates are 64% by SPEP, 68% UPEP, and 99–100% by SFLC
  • Bone marrow aspiration and biopsy should be routinely performed to identify the lymphoproliferative clone
  • Chromosome analysis and fluorescent in situ hybridization (FISH) were performed only for a small portion of cases historically but are helpful for clonal identification

Familial Forms

  • N/A

Additional Information

  • Survival improves with early diagnosis and proteasome inhibitor (PI)-based treatment, autologous stem cell transplantation, and kidney transplantation[9][10]
  • Poor prognosis markers include old age, the presence of PCM, extrarenal (especially cardiac) involvement, poor response to initial treatment[7][11]
  • Elimination or reduction of the underlying B-cell proliferative neoplasms to control the aberrant Ig deposition is crucial for preventing disease progression[10][9]
  • Kidney transplantation has a very high recurrence rate without controlling the monoclonal gammopathy[12]

Links


References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

  1. Jump up to: 1.0 1.1 1.2 1.3 Kourelis, Taxiarchis V.; et al. (2016-11). "Outcomes of patients with renal monoclonal immunoglobulin deposition disease". American Journal of Hematology. 91 (11): 1123–1128. doi:10.1002/ajh.24528. ISSN 1096-8652. PMID 27501122. Check date values in: |date= (help)
  2. Szita, Virág Réka; et al. (2022). "Targeted Venetoclax Therapy in t(11;14) Multiple Myeloma: Real World Data From Seven Hungarian Centers". Pathology oncology research: POR. 28: 1610276. doi:10.3389/pore.2022.1610276. ISSN 1532-2807. PMC 8918485 Check |pmc= value (help). PMID 35295611 Check |pmid= value (help).
  3. Bal, Susan; et al. (2022). "Multiple myeloma with t(11;14): unique biology and evolving landscape". American Journal of Cancer Research. 12 (7): 2950–2965. ISSN 2156-6976. PMC 9360221 Check |pmc= value (help). PMID 35968339 Check |pmid= value (help).
  4. Chakraborty, Rajshekhar; et al. (2022-10). "How do we manage t(11;14) plasma cell disorders with venetoclax?". British Journal of Haematology. 199 (1): 31–39. doi:10.1111/bjh.18243. ISSN 1365-2141. PMID 35594184 Check |pmid= value (help). Check date values in: |date= (help)
  5. Pozzi, Claudio; et al. (2003-12). "Light chain deposition disease with renal involvement: clinical characteristics and prognostic factors". American Journal of Kidney Diseases: The Official Journal of the National Kidney Foundation. 42 (6): 1154–1163. doi:10.1053/j.ajkd.2003.08.040. ISSN 1523-6838. PMID 14655186. Check date values in: |date= (help)
  6. Nasr, Samih H.; et al. (2012-02). "Renal monoclonal immunoglobulin deposition disease: a report of 64 patients from a single institution". Clinical journal of the American Society of Nephrology: CJASN. 7 (2): 231–239. doi:10.2215/CJN.08640811. ISSN 1555-905X. PMID 22156754. Check date values in: |date= (help)
  7. Jump up to: 7.0 7.1 Joly, Florent; et al. (2019-02-07). "Randall-type monoclonal immunoglobulin deposition disease: novel insights from a nationwide cohort study". Blood. 133 (6): 576–587. doi:10.1182/blood-2018-09-872028. ISSN 1528-0020. PMID 30578255.
  8. Mohan, Meera; et al. (2017-08). "Clinical characteristics and prognostic factors in multiple myeloma patients with light chain deposition disease". American Journal of Hematology. 92 (8): 739–745. doi:10.1002/ajh.24756. ISSN 1096-8652. PMID 28383130. Check date values in: |date= (help)
  9. Jump up to: 9.0 9.1 Sayed, Rabya H.; et al. (2015-12-24). "Natural history and outcome of light chain deposition disease". Blood. 126 (26): 2805–2810. doi:10.1182/blood-2015-07-658872. ISSN 1528-0020. PMC 4732758. PMID 26392598.
  10. Jump up to: 10.0 10.1 Cohen, Camille; et al. (2015-11). "Bortezomib produces high hematological response rates with prolonged renal survival in monoclonal immunoglobulin deposition disease". Kidney International. 88 (5): 1135–1143. doi:10.1038/ki.2015.201. ISSN 1523-1755. PMID 26176826. Check date values in: |date= (help)
  11. Angel-Korman, Avital; et al. (2020-04). "The Role of Kidney Transplantation in Monoclonal Ig Deposition Disease". Kidney International Reports. 5 (4): 485–493. doi:10.1016/j.ekir.2020.01.011. ISSN 2468-0249. PMC 7136323 Check |pmc= value (help). PMID 32274452 Check |pmid= value (help). Check date values in: |date= (help)
  12. Said, Samar M.; et al. (2018-07). "Proliferative glomerulonephritis with monoclonal immunoglobulin G deposits is associated with high rate of early recurrence in the allograft". Kidney International. 94 (1): 159–169. doi:10.1016/j.kint.2018.01.028. ISSN 1523-1755. PMID 29716794. Check date values in: |date= (help)


Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):


*Citation of this Page: “Monoclonal immunoglobulin deposition disease”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 02/11/2025, https://ccga.io/index.php/HAEM5:Monoclonal_immunoglobulin_deposition_disease.