Immunoglobulin-related (AL) amyloidosis
Haematolymphoid Tumours (WHO Classification, 5th ed.)
![]() | This page is under construction |
editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition ClassificationThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Primary Amyloidosis.
(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)
Primary Author(s)*
Heather E. Williams, PhD, MS, PgD, ErCLG
WHO Classification of Disease
Structure | Disease |
---|---|
Book | Haematolymphoid Tumours (5th ed.) |
Category | B-cell lymphoid proliferations and lymphomas |
Family | Plasma cell neoplasms and other diseases with paraproteins |
Type | Diseases with monoclonal immunoglobulin deposition |
Subtype(s) | Immunoglobulin-related (AL) amyloidosis |
WHO Essential and Desirable Genetic Diagnostic Criteria
(Instructions: The table will have the diagnostic criteria from the WHO book autocompleted; remove any non-genetics related criteria. If applicable, add text about other classification systems that define this entity and specify how the genetics-related criteria differ.)
WHO Essential Criteria (Genetics)* | |
WHO Desirable Criteria (Genetics)* | |
Other Classification |
*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.
Related Terminology
(Instructions: The table will have the related terminology from the WHO autocompleted.)
Acceptable | |
Not Recommended |
Gene Rearrangements
Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Driver Gene | Fusion(s) and Common Partner Genes | Molecular Pathogenesis | Typical Chromosomal Alteration(s) | Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|---|
EXAMPLE: ABL1 | EXAMPLE: BCR::ABL1 | EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. | EXAMPLE: t(9;22)(q34;q11.2) | EXAMPLE: Common (CML) | EXAMPLE: D, P, T | EXAMPLE: Yes (WHO, NCCN) | EXAMPLE:
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). |
EXAMPLE: CIC | EXAMPLE: CIC::DUX4 | EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. | EXAMPLE: t(4;19)(q25;q13) | EXAMPLE: Common (CIC-rearranged sarcoma) | EXAMPLE: D | EXAMPLE:
DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |
EXAMPLE: ALK | EXAMPLE: ELM4::ALK
|
EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. | EXAMPLE: N/A | EXAMPLE: Rare (Lung adenocarcinoma) | EXAMPLE: T | EXAMPLE:
Both balanced and unbalanced forms are observed by FISH (add references). | |
EXAMPLE: ABL1 | EXAMPLE: N/A | EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | EXAMPLE: N/A | EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) | EXAMPLE: D, P, T | ||
editv4:Chromosomal Rearrangements (Gene Fusions)The content below was from the old template. Please incorporate above.
Overall, the genetic profile of AL amyloidosis is similar to non-IgM Monoclonal Gammopathy of Undetermined Significance (MGUS) and Multiple Myeloma (MM). However, notably, the frequency of the [t(11;14)(q13;q32), IGH-CCND1] chromosomal rearrangement in AL amyloidosis differs significantly than that of MGUS and MM. The [t(11;14)(q13;q32), IGH-CCND1] occurs at higher frequency in AL amyloidosis (~40% of patients) than in MGUS and MM (15-20%)[1][2]. The [t(11;14)(q13;q32), IGH-CCND1] fusion results from the juxtaposition of the CCND1 proto-oncogene at 11q13 with the immunoglobulin heavy chain (IGH) locus at 14q32[3][4][5].
End of V4 Section
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).Please incorporate this section into the relevant tables found in:
- Chromosomal Rearrangements (Gene Fusions)
- Individual Region Genomic Gain/Loss/LOH
- Characteristic Chromosomal Patterns
- Gene Mutations (SNV/INDEL)
An early stage diagnosis provides patients with the broadest options for treatment, including eligibility for dose intensive chemotherapy regiments. However, the diagnosis requires a high clinical suspicion in individuals with nephrotic range proteinuria with or without renal insufficiency, non-dilated cardiomyopathy, peripheral neuropathy, hepatomegaly or automatic neuropathy in the presence (or absence) of paraprotein detectable in the serum or urine[6]. Prognosis is highly variable, however, it is extremely poor in the absence of treatment. Nearly twenty years ago, the median survival was dismal at 1-2 years, with less than 5% of all AL amyloidosis patients alive ten or more years following diagnosis, however within the last decade this median survival has changed dramatically, and ~30-40% patients survive more than ten years[7][8][9]. The most frequent cause of death (reported in ~40% of cases) is the presence of amyloid-related cardiac disease[10][11][12].
To preserve and improve the function of organs infiltrated by amyloid deposits, treatments focus on substantially reducing the supply of monoclonal immunoglobulin light chains to stabilize or regress existing amyloid deposits[13][14]. Chemotherapies used are based on regimens proven effective in patients with multiple myeloma, however clinical benefits are often delayed for many months to allow for adequate suppression of an underlying plasma cell dyscrasia[6]. These range from low, intermediate, or high dose approaches alone or in combination with other newly emerging novel therapies[6][15]. More intensive chemotherapies are associated with intense treatment related toxicity. Recent studies have linked the presence of specific genetic profiles (i.e. t(11;14)) to poor outcomes and suggested that the use of specific therapies (i.e. bortezomib) are associated with the poorest of outcomes, however, this link has not been firmly established—inversely patients with 1q deletion have superior outcomes when treated on bortezomib-based regimens[16][8][17].
End of V4 Section
Individual Region Genomic Gain/Loss/LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)
Chr # | Gain, Loss, Amp, LOH | Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] | Relevant Gene(s) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|
EXAMPLE:
7 |
EXAMPLE: Loss | EXAMPLE:
chr7 |
EXAMPLE:
Unknown |
EXAMPLE: D, P | EXAMPLE: No | EXAMPLE:
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). |
EXAMPLE:
8 |
EXAMPLE: Gain | EXAMPLE:
chr8 |
EXAMPLE:
Unknown |
EXAMPLE: D, P | EXAMPLE:
Common recurrent secondary finding for t(8;21) (add references). | |
EXAMPLE:
17 |
EXAMPLE: Amp | EXAMPLE:
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] |
EXAMPLE:
ERBB2 |
EXAMPLE: D, P, T | EXAMPLE:
Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | |
editv4:Genomic Gain/Loss/LOHThe content below was from the old template. Please incorporate above.
Copy number aberrations (CNAs) in AL amyloidosis are recurrent, although a subset (~10%) do not have aberrant chromosomal changes resolvable by CC or FISH (see Characteristic chromosomal aberrations /Patterns)[18]. Overall, genetic profile studies by Paiva et al. (2016) indicate CNA in AL amyloidosis range in frequency, but are similar to those observed in MM; the most frequent include 1) gains of (from highest frequency) chromosomes 9, 19, 5, and losses of X and 16; 2) whole arm alterations include gains of (from highest frequency) 15q and 1q, and losses of Yp, 13q, and 22q[19]. Nearly 90% of patients with t(11;14) have concomitant gains of 11q22.3/11q23, a result of an unbalanced translocation der(14)t(11;14)(q13;32)[18]. Copy neutral loss of heterozygosity (CN-LOH) was also observed in 50% of the cohort[18]. Stratifications analogous to those used in MM have been proposed and include: 1) hyperdiploid (HD): a subgroup with concomitant gains of 1q21; 2) t(11;14) 3) non-hyperdiploid (NHD) with deletion of 13q14/t(4;14); 4) t(v;14) IGH-unknown partner[18][20]. Furthermore, WES analyses have identified an average of 15 non-recurrent mutations per patient, but have failed to identify a unifying gene mutation specific for AL amyloidosis[19]. Recent genomic profiling using a combined WES and targeted gene sequencing panel approach have identified recurrent mutations in AL amyloidosis (see Gene mutations (SNV/INVDEL)[21].
End of V4 Section
Characteristic Chromosomal or Other Global Mutational Patterns
Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Chromosomal Pattern | Molecular Pathogenesis | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|
EXAMPLE:
Co-deletion of 1p and 18q |
EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | EXAMPLE: Common (Oligodendroglioma) | EXAMPLE: D, P | ||
EXAMPLE:
Microsatellite instability - hypermutated |
EXAMPLE: Common (Endometrial carcinoma) | EXAMPLE: P, T | |||
editv4:Characteristic Chromosomal Aberrations / PatternsThe content below was from the old template. Please incorporate above.
Intra-clonal genetic heterogeneity, i.e. the phenomenon by which malignant cells within an individual may share common cytogenetic aberrations is variable in AL amyloidosis, and there is not strict genetic uniformity within the clones and subclones, rather some tumor cells harbor additional, unique aberrations[2]. Cytogenetic analysis can profile the genetic heterogeneity within the underlying plasma cell dyscrasia in AL and provide prognostic information. These cytogenetic findings rely on Fluorescence in situ Hybridization (FISH) as conventional cytogenetics (CC), which requires the capture of cells in metaphase, has a poor karyotype yield in plasma cell dyscrasias with detection limited to a mere 15-20% of cases[22][23]. Following enrichment of plasma cells using magnetic activated cell sorting with CD138 immunobeads, interphase FISH analysis can be performed with MM specific probe sets or panels. These panels vary, but may include enumeration of CKS1B (1q21), CDKN2C (1p32), D9Z1/D15Z4 (CEN9, CEN15), RB1 (13q14), TP53 (17p13), and break-apart probes for MYC (8q24.1) or IGH (14q32.3) translocations, often with sequential reflex testing with dual-fusion FISH probes for the five common IGH partners: [t(4;14)(p16.3;q32); IGH-FGFR3], [t(6;14)(p21;q32); IGH-CCND3], [t(11;14)(q13;q32); IGH-CCND1], [t(14;16)(q32;q23); IGH-MAF], [t(14;20)(q32;q12); IGH-MAFB]. Common cytogenetic aberrations overlap with those found in MM and MUGS, although frequencies differ; the aberrations include the t(11;14)(q13;q32), CCND1-IGH aberration that predominates (and as such a FISH panel may be tailored specifically for AL amyloidosis), with fewer cases of hyperdiploid and high-risk karyotypes[24][25][26][27]. Hyperdiploidy and t(11;14) are mutually exclusive in AL amyloidosis[24][25][18]. Recent studies have further characterized the clonal distribution of these aberrations: main clones are likely to contain the t(11;14) or t(v;14) IGH-v translocations, and hyperdiploidy, whereas subclones similar to those in Monoclonal gammopathy of undetermined significance (MGUS) and MM often carry gain of CKS1B (1q21), and deletions of 8p21 (PNOC), RB1 (13q14), and TP53 (17p13)[2]. Of note, the frequency of the t(11;14) aberration has been shown to decrease with the progression of the plasma cell dyscrasia[2]. However, the impact of plasma cell FISH on the outcomes of AL amyloidosis remains uncertain, with some well characterized genotype-outcome associations recently reported[8][28].
End of V4 Section
Gene Mutations (SNV/INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Gene | Genetic Alteration | Tumor Suppressor Gene, Oncogene, Other | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|
EXAMPLE:EGFR
|
EXAMPLE: Exon 18-21 activating mutations | EXAMPLE: Oncogene | EXAMPLE: Common (lung cancer) | EXAMPLE: T | EXAMPLE: Yes (NCCN) | EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). |
EXAMPLE: TP53; Variable LOF mutations
|
EXAMPLE: Variable LOF mutations | EXAMPLE: Tumor Supressor Gene | EXAMPLE: Common (breast cancer) | EXAMPLE: P | EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | |
EXAMPLE: BRAF; Activating mutations | EXAMPLE: Activating mutations | EXAMPLE: Oncogene | EXAMPLE: Common (melanoma) | EXAMPLE: T | ||
Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
editv4:Gene Mutations (SNV/INDEL)The content below was from the old template. Please incorporate above.
Few studies have evaluated the genetic profile of bone marrow plasma cells from AL amyloidosis patients[18][29][19][30]. A comprehensive evaluation by Paiva et al. (2016) identified 38 significantly deregulated (3 upregulated/35 downregulated) genes in AL amyloidosis plasma cells. Specifically, the tumor suppressor genes cadherin 1 (CDH1) and RCAN family member 3 (RCAN), and the pro-apoptotic genes GLI pathogenesis related 1 (GLIPR1) and Fas cell surface death receptor (FAS) were downregulated, whereas significant overexpression of the interferon induced transmembrane protein 1 (IFITM1) gene known to be associated with the development of aggressive solid tumors was observed[19][31]
Huang et al. (2019) identified four recurrent mutations in an AL amyloidosis cohort using a combination of WES and targeted gene sequencing panels[21]. The recurrent mutations include: ankyrin repeat and SOCS box containing 15 [ASB15 (c.844C>T)], activating signal cointegrator 1 complex subunit 3 [ASCC3 (c.1595A>G)], H1.4 linker histone, cluster member [HIST1H1E (c.311C>T)] and KRAS proto-oncogene, GTPase [KRAS (c.35G >A)][21]. In addition, the presence of these mutations in the ASB15, ASCC3 and HIST1H1E genes were found to be associated with inferior overall survival[21].
Overall, although AL amyloidosis and MM share similarity in recurrent genetic aberrations, the genetic profile of plasma cells in AL amyloidosis involves substantially fewer genetic alterations (that are largely unique from genes altered in MM) when compared to MM—where the deregulation of ~400 genes has been documented[19][32][33]. Of note, individuals with t(11;14) had a lower total overall aberration burden when compared with other AL amyloidosis groups[18].
Other Mutations
Genetic analysis may be used to distinguish AL amyloidosis from hereditary amyloidosis. Testing for mutations in the transthyretin, fibrinogen Aα‐chain, lysozyme or apolipoprotein A-I genes are associated with hereditary disease. Genetic testing is often necessary as clinical features between diseases may be indistinguishable and family history evaluations may not be reflective given reduced penetrance[34][35].
End of V4 Section
Epigenomic Alterations
Not applicable
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
Genetic Diagnostic Testing Methods
Put your text here (Instructions: Include recommended testing type(s) to identify the clinically significant genetic alterations.)
Familial Forms
Put your text here (Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.)
Additional Information
Put your text here
Links
HAEM4:Monoclonal Immunoglobulin Deposition Diseases
Put your links here (use "Link" icon at top of page)
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)
- ↑ McKenna RW, et al., (2017). Plasma cell neoplasms: Monoclonal immunoglobulin deposition diseases, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow, SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p254-255.
- ↑ Jump up to: 2.0 2.1 2.2 2.3 Bochtler, Tilmann; et al. (2018). "Cytogenetic intraclonal heterogeneity of plasma cell dyscrasia in AL amyloidosis as compared with multiple myeloma". Blood Advances. 2 (20): 2607–2618. doi:10.1182/bloodadvances.2018023200. ISSN 2473-9529. PMC 6199662. PMID 30327369.CS1 maint: PMC format (link)
- ↑ Hayman, Suzanne R.; et al. (2001). "Translocations involving the immunoglobulin heavy-chain locus are possible early genetic events in patients with primary systemic amyloidosis". Blood. 98 (7): 2266–2268. doi:10.1182/blood.V98.7.2266. ISSN 1528-0020.
- ↑ Fonseca, Rafael; et al. (2000). "FISH Demonstrates Treatment-Related Chromosome Damage in Myeloid but not Plasma Cells in Primary Systemic Amyloidosis". Leukemia & Lymphoma. 39 (3–4): 391–395. doi:10.3109/10428190009065839. ISSN 1042-8194.
- ↑ Saleem, Mohamed; et al. (2016). "Fusion genes in malignant neoplastic disorders of haematopoietic system". Hematology. 21 (9): 501–512. doi:10.1080/10245332.2015.1106816. ISSN 1607-8454.
- ↑ Jump up to: 6.0 6.1 6.2 "Guidelines on the diagnosis and management of AL amyloidosis". British Journal of Haematology. 125 (6): 681–700. 2004. doi:10.1111/j.1365-2141.2004.04970.x. ISSN 0007-1048.
- ↑ Ra, Kyle; et al. (1995). "Primary systemic amyloidosis: clinical and laboratory features in 474 cases". PMID 7878478.
- ↑ Jump up to: 8.0 8.1 8.2 G, Merlini (2017). "AL amyloidosis: from molecular mechanisms to targeted therapies". doi:10.1182/asheducation-2017.1.1. PMC 6142527. PMID 29222231.CS1 maint: PMC format (link)
- ↑ Ra, Kyle; et al. (1999). "Long-term survival (10 years or more) in 30 patients with primary amyloidosis". PMID 9920856.
- ↑ Ra, Kyle; et al. (1986). "Primary systemic amyloidosis: multivariate analysis for prognostic factors in 168 cases". PMID 3719098.
- ↑ Warsame, R; et al. (2015). "Abnormal FISH in patients with immunoglobulin light chain amyloidosis is a risk factor for cardiac involvement and for death". Blood Cancer Journal. 5 (5): e310–e310. doi:10.1038/bcj.2015.34. ISSN 2044-5385. PMC 4423220. PMID 25933374.CS1 maint: PMC format (link)
- ↑ Tahir, Usman A.; et al. (2019). "Predictors of Mortality in Light Chain Cardiac Amyloidosis with Heart Failure". Scientific Reports. 9 (1). doi:10.1038/s41598-019-44912-x. ISSN 2045-2322. PMC 6561903. PMID 31189919.CS1 maint: PMC format (link)
- ↑ Mahmood, S.; et al. (2014). "Update on treatment of light chain amyloidosis". Haematologica. 99 (2): 209–221. doi:10.3324/haematol.2013.087619. ISSN 0390-6078. PMC 3912950. PMID 24497558.CS1 maint: PMC format (link)
- ↑ Jd, Gillmore; et al. (1997). "Amyloidosis: a review of recent diagnostic and therapeutic developments". PMID 9375734.
- ↑ National Comprehensive Cancer Network. Systemic Light Chain Amyloidosis (Version 1.2020). https://www.nccn.org/professionals/physician_gls/pdf/amyloidosis.pdf Accessed July 20th, 2020.
- ↑ Ah, Bryce; et al. (2009). "Translocation t(11;14) and survival of patients with light chain (AL) amyloidosis". doi:10.3324/haematol.13369. PMC 2649355. PMID 19211640.CS1 maint: PMC format (link)
- ↑ Bochtler, Tilmann; et al. (2015). "Translocation t(11;14) Is Associated With Adverse Outcome in Patients With Newly Diagnosed AL Amyloidosis When Treated With Bortezomib-Based Regimens". Journal of Clinical Oncology. 33 (12): 1371–1378. doi:10.1200/JCO.2014.57.4947. ISSN 0732-183X.
- ↑ Jump up to: 18.0 18.1 18.2 18.3 18.4 18.5 18.6 Granzow, Martin; et al. (2017). "Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: first results from a genome-wide copy number array analysis". Haematologica. 102 (7): 1281–1290. doi:10.3324/haematol.2016.160721. ISSN 0390-6078. PMC 5566044. PMID 28341732.CS1 maint: PMC format (link)
- ↑ Jump up to: 19.0 19.1 19.2 19.3 19.4 Paiva, Bruno; et al. (2016). "Phenotypic, transcriptomic, and genomic features of clonal plasma cells in light-chain amyloidosis". Blood. 127 (24): 3035–3039. doi:10.1182/blood-2015-10-673095. ISSN 0006-4971.
- ↑ Cremer, Friedrich W.; et al. (2005). "Delineation of distinct subgroups of multiple myeloma and a model for clonal evolution based on interphase cytogenetics". Genes, Chromosomes and Cancer. 44 (2): 194–203. doi:10.1002/gcc.20231. ISSN 1045-2257.
- ↑ Jump up to: 21.0 21.1 21.2 21.3 Huang, Xu-Fei; et al. (2020). "Genomic profiling in amyloid light-chain amyloidosis reveals mutation profiles associated with overall survival". Amyloid. 27 (1): 36–44. doi:10.1080/13506129.2019.1678464. ISSN 1350-6129.
- ↑ Bochtler, Tilmann; et al. (2013). "Clonal Heterogeneity As Detected by Metaphase Karyotyping Is an Indicator of Poor Prognosis in Acute Myeloid Leukemia". Journal of Clinical Oncology. 31 (31): 3898–3905. doi:10.1200/JCO.2013.50.7921. ISSN 0732-183X.
- ↑ Gw, Dewald; et al. (1985). "The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis". PMID 3926026.
- ↑ Jump up to: 24.0 24.1 Bochtler, Tilmann; et al. (2008). "Evaluation of the cytogenetic aberration pattern in amyloid light chain amyloidosis as compared with monoclonal gammopathy of undetermined significance reveals common pathways of karyotypic instability". Blood. 111 (9): 4700–4705. doi:10.1182/blood-2007-11-122101. ISSN 0006-4971.
- ↑ Jump up to: 25.0 25.1 Bochtler, Tilmann; et al. (2011). "Hyperdiploidy is less frequent in AL amyloidosis compared with monoclonal gammopathy of undetermined significance and inversely associated with translocation t(11;14)". Blood. 117 (14): 3809–3815. doi:10.1182/blood-2010-02-268987. ISSN 0006-4971.
- ↑ Cj, Harrison; et al. (2002). "Translocations of 14q32 and deletions of 13q14 are common chromosomal abnormalities in systemic amyloidosis". PMID 11972529.
- ↑ Kobayashi, Hiroki; et al. (2019). "Prevalence and clinical implications of t(11;14) in patients with amyloid light-chain amyloidosis with or without concurrent multiple myeloma". Japanese Journal of Clinical Oncology. 49 (2): 195–198. doi:10.1093/jjco/hyy202. ISSN 1465-3621.
- ↑ Muchtar, E; et al. (2017). "Interphase fluorescence in situ hybridization in untreated AL amyloidosis has an independent prognostic impact by abnormality type and treatment category". Leukemia. 31 (7): 1562–1569. doi:10.1038/leu.2016.369. ISSN 0887-6924.
- ↑ López-Corral, L; et al. (2012). "SNP-based mapping arrays reveal high genomic complexity in monoclonal gammopathies, from MGUS to myeloma status". Leukemia. 26 (12): 2521–2529. doi:10.1038/leu.2012.128. ISSN 0887-6924.
- ↑ Weinhold, N; et al. (2014). "Immunoglobulin light-chain amyloidosis shares genetic susceptibility with multiple myeloma". Leukemia. 28 (11): 2254–2256. doi:10.1038/leu.2014.208. ISSN 0887-6924.
- ↑ Yu, Fang; et al. (2015). "IFITM1 promotes the metastasis of human colorectal cancer via CAV-1". Cancer Letters. 368 (1): 135–143. doi:10.1016/j.canlet.2015.07.034.
- ↑ Abraham, Roshini S.; et al. (2005). "Functional gene expression analysis of clonal plasma cells identifies a unique molecular profile for light chain amyloidosis". Blood. 105 (2): 794–803. doi:10.1182/blood-2004-04-1424. ISSN 0006-4971.
- ↑ Davies, Faith E.; et al. (2003). "Insights into the multistep transformation of MGUS to myeloma using microarray expression analysis". Blood. 102 (13): 4504–4511. doi:10.1182/blood-2003-01-0016. ISSN 0006-4971.
- ↑ Lachmann, Helen J.; et al. (2002). "Misdiagnosis of Hereditary Amyloidosis as AL (Primary) Amyloidosis". New England Journal of Medicine. 346 (23): 1786–1791. doi:10.1056/NEJMoa013354. ISSN 0028-4793.
- ↑ Li, Danyang; et al. (2019). "Typing of hereditary renal amyloidosis presenting with isolated glomerular amyloid deposition". BMC Nephrology. 20 (1). doi:10.1186/s12882-019-1667-5. ISSN 1471-2369. PMC 6929319. PMID 31870425.CS1 maint: PMC format (link)
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative. When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
Prior Author(s):
*Citation of this Page: “Immunoglobulin-related (AL) amyloidosis”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 02/11/2025, https://ccga.io/index.php/HAEM5:Immunoglobulin-related_(AL)_amyloidosis.