Mycosis fungoides
Haematolymphoid Tumours (WHO Classification, 5th ed.)
![]() | This page is under construction |
editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition ClassificationThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Mycosis Fungoides.
(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)
Primary Author(s)*
Jane Scribner, MD and Daynna J. Wolff, PhD
WHO Classification of Disease
Structure | Disease |
---|---|
Book | Haematolymphoid Tumours (5th ed.) |
Category | T-cell and NK-cell lymphoid proliferations and lymphomas |
Family | Mature T-cell and NK-cell neoplasms |
Type | Primary cutaneous T-cell lymphoid proliferations and lymphomas |
Subtype(s) | Mycosis fungoides |
WHO Essential and Desirable Genetic Diagnostic Criteria
(Instructions: The table will have the diagnostic criteria from the WHO book autocompleted; remove any non-genetics related criteria. If applicable, add text about other classification systems that define this entity and specify how the genetics-related criteria differ.)
WHO Essential Criteria (Genetics)* | |
WHO Desirable Criteria (Genetics)* | |
Other Classification |
*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.
Related Terminology
(Instructions: The table will have the related terminology from the WHO autocompleted.)
Acceptable | |
Not Recommended |
Gene Rearrangements
Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Driver Gene | Fusion(s) and Common Partner Genes | Molecular Pathogenesis | Typical Chromosomal Alteration(s) | Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|---|
EXAMPLE: ABL1 | EXAMPLE: BCR::ABL1 | EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. | EXAMPLE: t(9;22)(q34;q11.2) | EXAMPLE: Common (CML) | EXAMPLE: D, P, T | EXAMPLE: Yes (WHO, NCCN) | EXAMPLE:
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). |
EXAMPLE: CIC | EXAMPLE: CIC::DUX4 | EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. | EXAMPLE: t(4;19)(q25;q13) | EXAMPLE: Common (CIC-rearranged sarcoma) | EXAMPLE: D | EXAMPLE:
DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |
EXAMPLE: ALK | EXAMPLE: ELM4::ALK
|
EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. | EXAMPLE: N/A | EXAMPLE: Rare (Lung adenocarcinoma) | EXAMPLE: T | EXAMPLE:
Both balanced and unbalanced forms are observed by FISH (add references). | |
EXAMPLE: ABL1 | EXAMPLE: N/A | EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | EXAMPLE: N/A | EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) | EXAMPLE: D, P, T | ||
editv4:Chromosomal Rearrangements (Gene Fusions)The content below was from the old template. Please incorporate above.
- No consistent gene fusions
- CD28-CTLA4 gene fusion identified, resulting in activation of TCR signaling [1]
End of V4 Section
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).Please incorporate this section into the relevant tables found in:
- Chromosomal Rearrangements (Gene Fusions)
- Individual Region Genomic Gain/Loss/LOH
- Characteristic Chromosomal Patterns
- Gene Mutations (SNV/INDEL)
The staging system for mycosis fungoides, which also includes Sézary syndrome, was updated in 2007 by the International Society for Cutaneous Lymphomas (ISCL) and the European Organization of Research and Treatment of Cancer (EORTC) [2]. The revised TNMB staging of MF/SS determines management and treatment, and has been demonstrated to have prognostic significance. [3] The TNMB staging forms the basis for a risk-adapted approach to treatment of mycosis fungoides.
Skin | |
T1 | Limited patches, papules, and/or plaques covering <10% of the skin surface. May futher stratify to T1a (patch only) vs T1b (plaque +/- patch) |
T1a | Patches only < 10% of skin surface |
T1b | Plaques +/- patches < 10% of skin surface |
T2 | Patches, papules or plaques covering > 10% of skin surface. May further stratify to T2a (patch only) vs T2b (plaque +/- patch) |
T2a | Patches only > 10% of skin surface |
T2b | Plaques +/- patches > 10% of skin surface |
T3 | One or more tumors (> 1-cm diameter) |
T4 | Confluence of erythema covering > 80% body surface area |
Node | |
N0 | No clinically abnormal peripheral lymph nodes (firm, irregular, clustered, fixed, or 1.5 cm or larger), biopsy not required |
N1 | Clinically abnormal peripheral lymph nodes; histopathology Dutch grade 1 or NCI LN0-2 |
N1a | Clone negative (defined by PCR or Souther blod analysis of T-cell receptor gene) |
N1b | Clone positive defined by PCR or Souther blod analysis of T-cell receptor gene) |
N2 | Clinically abnormal peripheral lymph nodes; histopathology Dutch grade 2 or NCI LN3 |
N2a | Clone negative |
N2b | Clone positive |
N3 | Clinically abnormal peripheral lymph nodes; histopathology Dutch grades 3 - 4 or NVI LN4 (clone positive or negative) |
Nx | Clinically abnormal peripheral lymph nodes; no histologic confirmation |
Visceral | |
M0 | No visceral organ invovlement |
M1 | Visceral invovlement (must have pathology confirmation, for spleen and liver may be diagnosed by imaging criteria; specify organ involved) |
Blood | |
B0 | Absence of significant blood invovlement: , 5% of peripheral blood lymphocytes are atypical (Sezary) cells |
B0a | Clone negative |
B0b | Clone positive |
B1 | Low blood tumor burdern: > 5% of peripheral blood lymphocytes are atypical (Sezary) cells but does not meet the criteria of B2 |
B1a | Clone negative |
B1b | Clone positive |
B2 | High blood tumor burdern: > 1000/µL Sezary cells with positive clone |
The above listed chromosome rearrangement and several gene mutations provide the rational for the use of targeted therapy in mycosis fungoides. These are summarized in the table below.
Molecular marker/mutation | Targeted therapy |
---|---|
CD30 | Brentuximab |
CTLA4 | Ipilimumab |
CD28-CTLA4 fusion | Ipilimumab |
CCR4 | Mogamulizumab |
NFkB | Bortezomib |
TNFRSF1B | Bortezomib |
CD158k/KIR3DL2 | IPH4102 |
JAK/STAT pathway | Ruxolitinib (JAK 1/3), Tofacitinib (JAK 1/2) |
PDCD1 | Pembrolizumab |
End of V4 Section
Individual Region Genomic Gain/Loss/LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)
Chr # | Gain, Loss, Amp, LOH | Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] | Relevant Gene(s) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|
EXAMPLE:
7 |
EXAMPLE: Loss | EXAMPLE:
chr7 |
EXAMPLE:
Unknown |
EXAMPLE: D, P | EXAMPLE: No | EXAMPLE:
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). |
EXAMPLE:
8 |
EXAMPLE: Gain | EXAMPLE:
chr8 |
EXAMPLE:
Unknown |
EXAMPLE: D, P | EXAMPLE:
Common recurrent secondary finding for t(8;21) (add references). | |
EXAMPLE:
17 |
EXAMPLE: Amp | EXAMPLE:
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] |
EXAMPLE:
ERBB2 |
EXAMPLE: D, P, T | EXAMPLE:
Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | |
editv4:Genomic Gain/Loss/LOHThe content below was from the old template. Please incorporate above.
Mycosis fungoides does not have a defining disease specific molecular abnormality. However, the molecular profile of mycosis fungoides and other CTCLs continues to be investigated.
Large-scale genomic analysis using array comparative genomic hybridization and next generation sequencing including whole genome, transcriptome and exome sequencing, reveals significant genomic complexity in mycosis fungoides, [5] with an observation that there is an inverse correlation between genomic complexity and survival. [6]
Chromosome Number | Gain/Loss/Amp/LOH | Percent of cases | Consequence |
---|---|---|---|
1p | Loss | 38% | Minimal region of deletion at D1S228; other candidate genes in mycosis fungoides map to 1p12p26 |
17p | Loss | 21% | Disease progression by inactivation of genes on 17p, including p53 |
4/4q | Gain | 18% | Oncogenes on chromosome 4: hPTTG, TBC1D1, FGFR3, KIT, PDGFRA |
10q/10 | Loss | 15% | Minimal region of deletion at 10q26; cancer-related genes mapped to 10q: PTEN, LG11, DMBT1, FAS |
19 | Loss | 15% | |
18 | Gain | 15% | |
17q/17 | Gain | 12% |
Chromothripsis has been observed in up to 65% of CTCLs. Most events occur in chromosomes 10, 2, and 1. It is possible that these events may be the mechanism for simultaneous inactivation of multiple tumor suppressor genes see in mycosis fungoides. [7]
editUnassigned ReferencesThe following referenees were placed in the header. Please place them into the appropriate locations in the text.
End of V4 Section
End of V4 Section
Characteristic Chromosomal or Other Global Mutational Patterns
Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Chromosomal Pattern | Molecular Pathogenesis | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|
EXAMPLE:
Co-deletion of 1p and 18q |
EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | EXAMPLE: Common (Oligodendroglioma) | EXAMPLE: D, P | ||
EXAMPLE:
Microsatellite instability - hypermutated |
EXAMPLE: Common (Endometrial carcinoma) | EXAMPLE: P, T | |||
editv4:Characteristic Chromosomal Aberrations / PatternsThe content below was from the old template. Please incorporate above.
Complex chromosomal abnormalities have been identified in mycosis fungoides, usually in tumor stage. Specific translocations have not been identified.
End of V4 Section
Gene Mutations (SNV/INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Gene | Genetic Alteration | Tumor Suppressor Gene, Oncogene, Other | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|
EXAMPLE:EGFR
|
EXAMPLE: Exon 18-21 activating mutations | EXAMPLE: Oncogene | EXAMPLE: Common (lung cancer) | EXAMPLE: T | EXAMPLE: Yes (NCCN) | EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). |
EXAMPLE: TP53; Variable LOF mutations
|
EXAMPLE: Variable LOF mutations | EXAMPLE: Tumor Supressor Gene | EXAMPLE: Common (breast cancer) | EXAMPLE: P | EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | |
EXAMPLE: BRAF; Activating mutations | EXAMPLE: Activating mutations | EXAMPLE: Oncogene | EXAMPLE: Common (melanoma) | EXAMPLE: T | ||
Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
editv4:Gene Mutations (SNV/INDEL)The content below was from the old template. Please incorporate above.
Although no disease specific molecular abnormalities exist in mycosis fungoides, but some changes are seen more frequently than others.[4] Single copy number variations (SCNV) are important mutational drivers for CTCLs and mycosis fungoides and are seen with greater frequency than somatic single nucleotide variations (SSNV) when compared to other cancers with significantly higher SCNV/SSNV ratios.[5] [7] Alterations in tumor suppressor genes are frequently implication the pathogenesis of mycosis fungoides, and more than 90% of variants arise from copy number alterations. [5]
Gene | Mutation | Oncogene/Tumor Suppressor/Other | Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) | Prevalence (COSMIC/TCGA/Other) |
---|---|---|---|---|
TNFRSF1B | Thr377Ile | Recurrent point mutation; constitutive activation of NFkB signaling pathway | 18%[9] | |
HNRNPK | Tumor Suppressor | Inhibitor of JAK-STAT signaling[10] | ||
SOCS1 | Tumor Suppressor | Inhibitor of JAK-STAT signaling [10] | ||
ZEB1 | Tumor Suppressor | Zinc-finger transcription repressor | 56-65%[7] | |
PDCD1 | Expressing PDL1, deleted | 36%[7] | ||
TP53 | Tumor Suppressor | Deletion | 92.5% [7] | |
TOX | Encodes member of homeobox family, upregulated in MF[11] |
End of V4 Section
Epigenomic Alterations
Epigenetic modifiers of DNA, including DNMT3A, are frequently mutated in mycosis fungoides. [12]
An epigenetic mediator, the writer KMT2C of the histone methyltransferases (KMT) family, is recurrently deleted in mycosis fungoides. [7]
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
editv4:Genes and Main Pathways InvolvedThe content below was from the old template. Please incorporate above.
End of V4 Section
Genetic Diagnostic Testing Methods
A definitive diagnosis of mycosis fungoides may be made on the basis of clinical, histopathologic and immunohistochemical features alone.
Assessment of aberrant loss of T-cell antigen expression by immunohistochemical staining for CD2, CD3, CD5, and CD7 are useful ancillary studies.
Demonstration of T-cell receptor clonality often facilitates diagnosis and serves as an adjunct to the diagnosis.[13] Presence of identical clones from two different biopsy sites is quit specific for mycosis fungoides[14] and may be useful in early or histologically equivocal cases. However early mycosis fungoides may commonly be negative for clonal TCR rearrangements [15] and T-cell clonality itself is not diagnostic of a T cell lymphoma as many dermatitis may have dominant T cells clones[4].
There are various methods to assess TCR clonality, with different techniques and sensitivities. PCR based assays have sensitivities ranging from 50-90% in various studies[16] [17]. The use of Next generation sequencing (NGS)/high throughput sequencing has improved the sensitivity of detection of TCR clonality, and may be as high as 85%[18][19].
In 2020, the American Society of Clinical Pathology, the College of American pathologists, and the American Society of Hematology released a statement from an expert panel convened to develop evidence-based guidelines for appropriate evaluation process for adult patients with suspected lymphomas[20]. In their summary, it is stated that clinical care providers should not routinely use up-front PCR-based clonality studies of antigen receptor genes (i.e., T-cell receptor) in the initial investigation of lymphoma. However, there may be a confirmatory role of these tests in certain settings. Providers should rely on immunophenotyping by flow cytometry and/or IHC in addition to morphology for the evaluation of specimens for the diagnosis and sub-classification of lymphoma[20]. A recent study demonstrated that positive TCR gene rearrangement studies are not predictive of lymphoproliferative disorders in patients which otherwise negative phenotyping[21].
Summary of additional diagnostic and prognostic testing methods:
- TCR gene rearrangement studies may be utilized for monitoring of residual disease[22]
- Tumor clone frequency as determined by high throughput sequencing of TCRβ gene has been investigated as a marker for progression and overall survival in mycosis fungoides[23]
- In cases with suspected large cell transformation, staining for CD30 positivity may provide additional therapeutic options[24]
- Recent diagnostic panels of gene expression profiling of MF/SS have been developed. A 17 gene signature panel including IL2RA, CCR4, STAT5A and TOX has been described to identify patients at risk for progression of disease[25]
- microRNA profiling may have a role in diagnosis and management of mycosis fungoides, with potential 95% sensitivity and specificity in differentiating early mycosis fungoides from benign lesions[26]
Familial Forms
- There are rare reports of familial MF, suggesting that a host genetic factor may contribute to the development of the disease[27]
Additional Information
- N/A
Links
- N/A
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)
- ↑ Ungewickell, Alexander; et al. (2015-09). "Genomic analysis of mycosis fungoides and Sézary syndrome identifies recurrent alterations in TNFR2". Nature Genetics. 47 (9): 1056–1060. doi:10.1038/ng.3370. ISSN 1061-4036. PMC 6091217. PMID 26258847. Check date values in:
|date=
(help)CS1 maint: PMC format (link) - ↑ Olsen, Elise; et al. (2007-09-15). "Revisions to the staging and classification of mycosis fungoides and Sezary syndrome: a proposal of the International Society for Cutaneous Lymphomas (ISCL) and the cutaneous lymphoma task force of the European Organization of Research and Treatment of Cancer (EORTC)". Blood. 110 (6): 1713–1722. doi:10.1182/blood-2007-03-055749. ISSN 0006-4971. PMID 17540844.
- ↑ Agar, Nita Sally; et al. (2010-11-01). "Survival outcomes and prognostic factors in mycosis fungoides/Sézary syndrome: validation of the revised International Society for Cutaneous Lymphomas/European Organisation for Research and Treatment of Cancer staging proposal". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 28 (31): 4730–4739. doi:10.1200/JCO.2009.27.7665. ISSN 1527-7755. PMID 20855822.
- ↑ Jump up to: 4.0 4.1 4.2 Walia, Ritika; et al. (2020-01-22). "An Update on Molecular Biology of Cutaneous T Cell Lymphoma". Frontiers in Oncology. 9: 1558. doi:10.3389/fonc.2019.01558. ISSN 2234-943X. PMC 6987372. PMID 32039026 Check
|pmid=
value (help).CS1 maint: PMC format (link) - ↑ Jump up to: 5.0 5.1 5.2 Elenitoba-Johnson, Kojo S.J.; et al. (2017-01). "A new molecular paradigm in mycosis fungoides and Sézary syndrome". Seminars in Diagnostic Pathology. 34 (1): 15–21. doi:10.1053/j.semdp.2016.11.002. Check date values in:
|date=
(help) - ↑ Wilcox, Ryan A. (2011-11). "Cutaneous T-cell lymphoma: 2011 update on diagnosis, risk-stratification, and management". American Journal of Hematology. 86 (11): 928–948. doi:10.1002/ajh.22139. ISSN 1096-8652. PMID 21990092. Check date values in:
|date=
(help) - ↑ Jump up to: 7.0 7.1 7.2 7.3 7.4 7.5 Choi, Jaehyuk; et al. (2015-09). "Genomic landscape of cutaneous T cell lymphoma". Nature Genetics. 47 (9): 1011–1019. doi:10.1038/ng.3356. ISSN 1546-1718. PMC 4552614. PMID 26192916. Check date values in:
|date=
(help) - ↑ Mao, X.; et al. (2002-09). "Molecular cytogenetic analysis of cutaneous T-cell lymphomas: identification of common genetic alterations in Sézary syndrome and mycosis fungoides". The British Journal of Dermatology. 147 (3): 464–475. doi:10.1046/j.1365-2133.2002.04966.x. ISSN 0007-0963. PMID 12207585. Check date values in:
|date=
(help) - ↑ Izban, K (2000-12). "Constitutive expression of NF-κB is a characteristic feature of mycosis fungoides: Implications for apoptosis resistance and pathogenesis". Human Pathology. 31 (12): 1482–1490. doi:10.1053/hupa.2000.20370. Check date values in:
|date=
(help) - ↑ Jump up to: 10.0 10.1 Bastidas Torres, Armando N.; et al. (2018-12). "Genomic analysis reveals recurrent deletion of JAK-STAT signaling inhibitors HNRNPK and SOCS1 in mycosis fungoides". Genes, Chromosomes and Cancer. 57 (12): 653–664. doi:10.1002/gcc.22679. PMC 6282857. PMID 30144205. Check date values in:
|date=
(help)CS1 maint: PMC format (link) - ↑ Huang, Yuanshen; et al. (2014-06-30). "Thymocyte selection-associated high mobility group box gene (TOX) is aberrantly over-expressed in mycosis fungoides and correlates with poor prognosis". Oncotarget. 5 (12): 4418–4425. doi:10.18632/oncotarget.2031. ISSN 1949-2553. PMC 4147334. PMID 24947046.CS1 maint: PMC format (link)
- ↑ Kiel, Mark J.; et al. (2015-09-29). "Genomic analyses reveal recurrent mutations in epigenetic modifiers and the JAK–STAT pathway in Sézary syndrome". Nature Communications. 6 (1): 8470. doi:10.1038/ncomms9470. ISSN 2041-1723. PMC 4598843. PMID 26415585.CS1 maint: PMC format (link)
- ↑ Kirsch, Ilan R.; et al. (2015-10-07). "TCR sequencing facilitates diagnosis and identifies mature T cells as the cell of origin in CTCL". Science Translational Medicine. 7 (308): 308ra158. doi:10.1126/scitranslmed.aaa9122. ISSN 1946-6242. PMC 4765389. PMID 26446955.
- ↑ Thurber, Stacy E.; et al. (2007-11). "T-cell clonality analysis in biopsy specimens from two different skin sites shows high specificity in the diagnosis of patients with suggested mycosis fungoides". Journal of the American Academy of Dermatology. 57 (5): 782–790. doi:10.1016/j.jaad.2007.06.004. ISSN 1097-6787. PMID 17646032. Check date values in:
|date=
(help) - ↑ Glusac, Earl J. (2003-06). "Criterion by criterion, mycosis fungoides". The American Journal of Dermatopathology. 25 (3): 264–269. doi:10.1097/00000372-200306000-00014. ISSN 0193-1091. PMID 12775992. Check date values in:
|date=
(help) - ↑ Hsiao, Pa-Fan; et al. (2007-01-01). "Histopathologic-molecular Correlation in Early Mycosis Fungoides Using T-cell Receptor γ Gene Rearrangement by Polymerase Chain Reaction with Laser Capture Microdissection". Journal of the Formosan Medical Association. 106 (4): 265–272. doi:10.1016/S0929-6646(09)60251-5. ISSN 0929-6646.
- ↑ Ponti, Renata; et al. (2008-04). "TCRγ-Chain Gene Rearrangement by PCR-Based GeneScan: Diagnostic Accuracy Improvement and Clonal Heterogeneity Analysis in Multiple Cutaneous T-Cell Lymphoma Samples". Journal of Investigative Dermatology. 128 (4): 1030–1038. doi:10.1038/sj.jid.5701109. ISSN 0022-202X. Check date values in:
|date=
(help) - ↑ Sufficool, Kari E.; et al. (2015-08). "T-cell clonality assessment by next-generation sequencing improves detection sensitivity in mycosis fungoides". Journal of the American Academy of Dermatology. 73 (2): 228–236.e2. doi:10.1016/j.jaad.2015.04.030. ISSN 0190-9622. Check date values in:
|date=
(help) - ↑ Rea, Bryan; et al. (2018-09). "Role of high-throughput sequencing in the diagnosis of cutaneous T-cell lymphoma". Journal of Clinical Pathology. 71 (9): 814–820. doi:10.1136/jclinpath-2018-205004. ISSN 0021-9746. Check date values in:
|date=
(help) - ↑ Jump up to: 20.0 20.1 Kroft, Steven H.; et al. (2020-11-11). "Laboratory Workup of Lymphoma in Adults". Archives of Pathology & Laboratory Medicine. doi:10.5858/arpa.2020-0261-SA. ISSN 1543-2165.
- ↑ Mendoza, Hadrian; et al. (2021-02-01). "Evaluation of Positive B- and T-Cell Gene Rearrangement Studies in Patients With Negative Morphology, Flow Cytometry, and Immunohistochemistry". Archives of Pathology & Laboratory Medicine. 145 (2): 227–230. doi:10.5858/arpa.2019-0663-OA. ISSN 1543-2165.
- ↑ Weng, W.-K.; et al. (2013-12-04). "Minimal Residual Disease Monitoring with High-Throughput Sequencing of T Cell Receptors in Cutaneous T Cell Lymphoma". Science Translational Medicine. 5 (214): 214ra171–214ra171. doi:10.1126/scitranslmed.3007420. ISSN 1946-6234.
- ↑ de Masson, Adele; et al. (2018-05-09). "High-throughput sequencing of the T cell receptor β gene identifies aggressive early-stage mycosis fungoides". Science Translational Medicine. 10 (440): eaar5894. doi:10.1126/scitranslmed.aar5894. ISSN 1946-6234. PMC 6366329. PMID 29743350.CS1 maint: PMC format (link)
- ↑ Krathen, Michael; et al. (2012-11-16). "Brentuximab Vedotin Demonstrates Significant Clinical Activity in Relapsed or Refractory Mycosis Fungoides with Variable CD30 Expression". Blood. 120 (21): 797–797. doi:10.1182/blood.V120.21.797.797. ISSN 0006-4971.
- ↑ Litvinov, Ivan V.; et al. (2015-06-15). "The Use of Transcriptional Profiling to Improve Personalized Diagnosis and Management of Cutaneous T-cell Lymphoma (CTCL)". Clinical Cancer Research. 21 (12): 2820–2829. doi:10.1158/1078-0432.CCR-14-3322. ISSN 1078-0432. PMC 4470792. PMID 25779945.CS1 maint: PMC format (link)
- ↑ Ralfkiaer, Ulrik; et al. (2011-11-24). "Diagnostic microRNA profiling in cutaneous T-cell lymphoma (CTCL)". Blood. 118 (22): 5891–5900. doi:10.1182/blood-2011-06-358382. ISSN 0006-4971. PMC 3342856. PMID 21865341.CS1 maint: PMC format (link)
- ↑ Hodak, Emmilia; et al. (2005-03). "Familial mycosis fungoides: report of 6 kindreds and a study of the HLA system". Journal of the American Academy of Dermatology. 52 (3 Pt 1): 393–402. doi:10.1016/j.jaad.2003.12.052. ISSN 1097-6787. PMID 15761416. Check date values in:
|date=
(help)
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative. When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
Prior Author(s):
*Citation of this Page: “Mycosis fungoides”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 02/11/2025, https://ccga.io/index.php/HAEM5:Mycosis_fungoides.