Follicular dendritic cell sarcoma

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search

Haematolymphoid Tumours (WHO Classification, 5th ed.)

editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Follicular Dendritic Cell Sarcoma.

(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)

Primary Author(s)*

Anna Heimes Dillon, MD and Shivani Golem, PhD, FACMG

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category Stroma-derived neoplasms of lymphoid tissues
Family Mesenchymal dendritic cell neoplasms
Type Follicular dendritic cell neoplasms
Subtype(s) Follicular dendritic cell sarcoma

Definition / Description of Disease

Follicular dendritic cell sarcoma (FDCS) is a neoplasm with morphologic and immunophenotypic features of follicular dendritic cells, which are normally present in lymphoid follicles and are derived from mesenchymal cells of lymphoid tissues.

Synonyms / Terminology

Follicular dendritic cell tumor

Dendritic reticulum cell tumor (no longer used)

Epidemiology / Prevalence

Put your text here

Clinical Features

Put your text here and fill in the table (Instruction: Can include references in the table. Do not delete table.)

Signs and Symptoms EXAMPLE: Asymptomatic (incidental finding on complete blood counts)

EXAMPLE: B-symptoms (weight loss, fever, night sweats)

EXAMPLE: Fatigue

EXAMPLE: Lymphadenopathy (uncommon)

Laboratory Findings EXAMPLE: Cytopenias

EXAMPLE: Lymphocytosis (low level)

Sites of Involvement

  • Extranodal sites (79%)
    • Liver, spleen, and GI tract most common
    • Any site may be involved
  • Lymph nodes (~15%)[1]

Morphologic Features

Put your text here

Immunophenotype

Finding Marker
Positive (lineage-defining) One or more of CD21, CD23, CD35
Positive (frequent) CXCL13, clusterin, podoplanin, fascin, vimentin
Positive (variable) CD68, EMA, S100
Negative (universal) CD1a, langerin, CD34, CD45, lysozyme, CD163, MPO, CD3, CD79a, cytokeratins, HMB-45


editUnassigned References
The following referenees were placed in the header. Please place them into the appropriate locations in the text.

[2][1]

Chromosomal Rearrangements (Gene Fusions)

Put your text here and fill in the table

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: 3'ABL1 / 5'BCR EXAMPLE: der(22) EXAMPLE: 20% (COSMIC)

EXAMPLE: 30% (add reference)

Yes No Yes EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).


editv4:Chromosomal Rearrangements (Gene Fusions)
The content below was from the old template. Please incorporate above.

The following rearrangements have been reported in individual cases, but whether they are recurrent is not yet known.

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence
EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: 3'ABL1 / 5'BCR EXAMPLE: der(22) EXAMPLE: 5%
EXAMPLE: t(8;21)(q22;q22) EXAMPLE: 5'RUNX1 / 3'RUNXT1 EXAMPLE: der(8) EXAMPLE: 5%

Individual Region Genomic Gain / Loss / LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.)

Chr # Gain / Loss / Amp / LOH Minimal Region Genomic Coordinates [Genome Build] Minimal Region Cytoband Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7:1- 159,335,973 [hg38]

EXAMPLE:

chr7

Yes Yes No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8:1-145,138,636 [hg38]

EXAMPLE:

chr8

No No No EXAMPLE:

Common recurrent secondary finding for t(8;21) (add reference).

Characteristic Chromosomal Patterns

Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.)

Chromosomal Pattern Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE:

Co-deletion of 1p and 18q

Yes No No EXAMPLE:

See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).

editv4:Characteristic Chromosomal Aberrations / Patterns
The content below was from the old template. Please incorporate above.

Although no recurrent chromosomal alterations have been identified in FDCS, the tumors often show complex karyotypes with loss of whole or partial chromosomes being the most frequent aberration. Losses frequently occur in regions harboring important tumor suppressor genes.[1]

Gene Mutations (SNV / INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.)

Gene; Genetic Alteration Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) Prevalence (COSMIC / TCGA / Other) Concomitant Mutations Mutually Exclusive Mutations Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE: TP53; Variable LOF mutations

EXAMPLE:

EGFR; Exon 20 mutations

EXAMPLE: BRAF; Activating mutations

EXAMPLE: TSG EXAMPLE: 20% (COSMIC)

EXAMPLE: 30% (add Reference)

EXAMPLE: IDH1 R123H EXAMPLE: EGFR amplification EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).


Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.


editv4:Gene Mutations (SNV/INDEL)
The content below was from the old template. Please incorporate above.

Put your text here and/or fill in the tables

Gene Mutation Oncogene/Tumor Suppressor/Other Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) Prevalence (COSMIC/TCGA/Other)
CDKN2A Copy number loss Tumor Suppressor
NFKBIA
TP53
BIRC3
CCND2
BRAF p.V600E 0-19%
TRAF3
TNFAIP3
RB1
CDK4/MDM2
PTEN
JAK2
SOCS3
BRCA1/BRCA2
KRAS
MYC

Other Mutations

Type Gene/Region/Other
Concomitant Mutations EXAMPLE: IDH1 R123H
Secondary Mutations EXAMPLE: Trisomy 7
Mutually Exclusive EXAMPLE: EGFR Amplification

Epigenomic Alterations

Put your text here

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Can include references in the table. Do not delete table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE:  KMT2C and ARID1A; Inactivating mutations EXAMPLE:  Histone modification, chromatin remodeling EXAMPLE:  Abnormal gene expression program
editv4:Genes and Main Pathways Involved
The content below was from the old template. Please incorporate above.

FDCS primarily shows alterations in the NF-κB signaling pathway. Unlike the dendritic cell and histiocytic neoplasms of hematopoietic origin, aberrations in the MAPK pathway are uncommon.

Genetic Diagnostic Testing Methods

The only current method of diagnosis is tissue biopsy with immunohistochemistry. FDCS must be differentiated from other mesenchymal dendritic cell neoplasms, histiocytic and dendritic cell neoplasms, and non-hematopoietic tumors such as carcinoma, sarcoma, or melanoma which may show histologic similarities.

Familial Forms

  • None known

Additional Information

Put your text here

Links

HAEM5:EBV-positive inflammatory follicular dendritic cell sarcoma

Put your links here (use "Link" icon at top of page)

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)

  1. 1.0 1.1 1.2 Facchetti, Fabio; et al. (2021-10). "Follicular dendritic cell sarcoma". Pathologica. 113 (5): 316–329. doi:10.32074/1591-951X-331. ISSN 1591-951X. PMC 8720404 Check |pmc= value (help). PMID 34837090 Check |pmid= value (help). Check date values in: |date= (help)
  2. Cite error: Invalid <ref> tag; no text was provided for refs named :0

Notes

*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.

*The hierarchical tumour classification structure displayed on this page is reproduced from the WHO Classification of Tumours with permission from the copyright holder, ©International Agency for Research on Cancer.

*Citation of this Page: “Follicular dendritic cell sarcoma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 09/6/2024, https://ccga.io/index.php/HAEM5:Follicular_dendritic_cell_sarcoma.