HAEM4Backup:B-Lymphoblastic Leukemia/Lymphoma with t(v;11q23.3); KMT2A-Rearranged

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search

Primary Author(s)*

Yassmine Akkari

Nicolas Millan

Cancer Category/Type

Precursor Lymphoid neoplasms

Cancer Sub-Classification / Subtype

B lymphoblastic leukemia/lymphoma with recurrent genetic abnormalities: MLL rearrangement

Definition / Description of Disease

B lymphoblastic leukemia/ lymphoma is the most common childhood cancer. Despite cure rates exceeding 90%, it remains an important cause of morbidity and mortality in adults and young children, especially when the disease relapses. It is a neoplasm of precursor cells (lymphoblasts) that are committed to the B-cell lineage. Blast cells are small to medium sized, with scant cytoplasm and inconspicuous nucleoli, mostly involving the bone marrow and peripheral blood. Occasionally, however, it can present with involvement of nodal and extra nodal sites (eg. lymph nodes and skin), at which point, it is more accurately referred to as B lymphoblastic lymphoma.

This class of the disease harbors a translocation between the MLL/KMT2A at 11q23 and any one of the large number of fusion partners. Patients with deletions of the MLL/KMT2A locus are not included in this group.

Synonyms / Terminology

MLL = KMT2A

With extensive bone marrow and peripheral blood involvement, B lymphoblastic leukemia is the most appropriate term. If, however, the disease presents as a mass lesion with minimal involvement of the bone marrow and peripheral blood, the term lymphoma should be used. When both sites are involved, the distinction between leukemia and lymphoma is arbitrary. A figure of 25% blasts in the bone marrow is used in some protocols as a threshold for defining leukemia.

Epidemiology / Prevalence

Etiology While the etiology of MLL translocations is unknown, there is strong evidence suggesting that it may occur in utero. These leukemias frequently affect very young infants, and this translocation is sometimes detected in blood spots of patients who later develop the disease. The MLL rearrangement is also seen in 85% of secondary leukemias that occur in patients treated with topoisomerase II inhibitors.

Epidemiology / Prevalence B-LBL/L is primarily a disease of children. 75% of cases occur in children under six years of age. The worldwide incidence is estimated at 1-5/100,000 persons per year.

MLL-rearranged B-ALL is often detected in infant leukemia and accounts for ~2% of all childhood ALLs. The outcome of MLL-R infant ALL remains poor with an event-free survival of 28-36% (Andersson AK et al., 2015 to be quoted in excel sheet). “MLL (mixed-lineage-leukemia) gene rearrangements at 11q23 are present in 80% of all infant B-ALL cases and 10% of all childhood B-ALL [38,39].”

Clinical Features

A substantial proportion of congenital leukemias, a subset of infant leukemias, harbors a rearrangement of the MLL gene (Moschiano E et al., 2016) MLL rearranged leukemia is associated with certain phenotypic features that distinguish them from other types of leukemia. MLL leukemias tend to be more aggressive, especially in infants, and more frequently present with hyperleukocytosis and central nervous system involvement.

Sites of Involvement

Put your text here

Morphologic Features

Put your text here

Immunophenotype

Put your text here and/or fill in the table

Finding Marker
Positive (universal) EXAMPLE CD1
Positive (subset) EXAMPLE CD2
Negative (universal) EXAMPLE CD3
Negative (subset) EXAMPLE CD4

Chromosomal Rearrangements (Gene Fusions)

Put your text here and/or fill in the table

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence
EXAMPLE t(9;22)(q34;q11.2) EXAMPLE 3'ABL1 / 5'BCR EXAMPLE der(22) EXAMPLE 5%
EXAMPLE t(8;21)(q22;q22) EXAMPLE 5'RUNX1 / 3'RUNXT1 EXAMPLE der(8) EXAMPLE 5%

Characteristic Chromosomal Aberrations / Patterns

Put your text here

Genomic Gain/Loss/LOH

Put your text here and/or fill in the table

Chromosome Number Gain/Loss/Amp/LOH Region
EXAMPLE 8 EXAMPLE Gain EXAMPLE chr8:0-1000000
EXAMPLE 7 EXAMPLE Loss EXAMPLE chr7:0-1000000

Gene Mutations (SNV/INDEL)

Put your text here and/or fill in the tables

Gene Mutation Oncogene/Tumor Suppressor/Other Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) Prevalence (COSMIC/TCGA/Other)
EXAMPLE TP53 EXAMPLE R273H EXAMPLE Tumor Suppressor EXAMPLE LOF EXAMPLE 20%

Other Mutations

Type Gene/Region/Other
Concomitant Mutations EXAMPLE IDH1 R123H
Secondary Mutations EXAMPLE Trisomy 7
Mutually Exclusive EXAMPLE EGFR Amplification

Epigenomics (Methylation)

Put your text here

Genes and Main Pathways Involved

Put your text here

Diagnostic Testing Methods

Put your text here

Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications)

Put your text here

Familial Forms

Put your text here

Other Information

Put your text here

Links

KMT2A

Put your links here (use "Link" icon at top of page)

References

(use "Cite" icon at top of page)

EXAMPLE Book

  1. Arber DA, et al., (2008). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, Editors. IARC Press: Lyon, France, p117-118.

Notes

*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.