Changes

51 bytes removed ,  13:28, 23 May 2019
Line 21: Line 21:  
==Cancer Category/Type==
 
==Cancer Category/Type==
   −
* '''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_and_Related_Precursor_Neoplasms Acute Myeloid Leukemia (AML) and Related Precursor Neoplasms]'''  
+
*'''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_and_Related_Precursor_Neoplasms Acute Myeloid Leukemia (AML) and Related Precursor Neoplasms]'''
 +
 
 
--- '''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_with_t(8;21)(q22;q22.1);_RUNX1-RUNX1T1 Acute Myeloid Leukemia (AML) with t(8;21)(q22;q22.1); RUNX1-RUNX1T1]'''
 
--- '''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_with_t(8;21)(q22;q22.1);_RUNX1-RUNX1T1 Acute Myeloid Leukemia (AML) with t(8;21)(q22;q22.1); RUNX1-RUNX1T1]'''
    
--- '''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_with_Mutated_RUNX1 Acute Myeloid Leukemia (AML) with Mutated RUNX1]'''
 
--- '''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_with_Mutated_RUNX1 Acute Myeloid Leukemia (AML) with Mutated RUNX1]'''
   −
The frequency of ''RUNX1'' mutations is between 5-18% of all AML patients tested [3]. The most common chromosomal translocation is t(8;21)(q22;q22)resulting in RUNX1-RUNX1T1 fusion in ''de novo'' AML, at approximately 7% [2,6].  This translocation confers a favorable prognosis in AML and other neoplasms [2,5,6].  Another ''RUNX1'' alteration is the t(3;21)(q26;q22), in which the RUNT domain of ''RUNX1'' is fused to the entire ''EVI1'' gene.  This translocation is rarely found in patients diagnosed with ''de novo'' AML and is more common in those with therapy-related myelodysplastic syndrome (MDS)/AML [9].  Other mutations in ''RUNX1'' include deletions, missense, splicing, frameshift, and nonsense alterations (mostly loss-of-function or decreased function), and occur at a frequency of approximately 10% in AML patients [6]. These mutations are mechanistically distinct from the chromosomal translocations and confer a worse prognosis [2,5,6].
+
The frequency of ''RUNX1'' mutations is between 5-18% of all AML patients tested [3]. The most common chromosomal translocation is t(8;21)(q22;q22) resulting in RUNX1-RUNX1T1 fusion in ''de novo'' AML, at approximately 7% [2,6].  This translocation confers a favorable prognosis in AML and other neoplasms [2,5,6].  Another ''RUNX1'' alteration is the t(3;21)(q26;q22), in which the RUNT domain of ''RUNX1'' is fused to the entire ''EVI1'' gene.  This translocation is rarely found in patients diagnosed with ''de novo'' AML and is more common in those with therapy-related myelodysplastic syndrome (MDS)/AML [9].  Other mutations in ''RUNX1'' include deletions, missense, splicing, frameshift, and nonsense alterations (mostly loss-of-function or decreased function), and occur at a frequency of approximately 10% in AML patients [6]. These mutations are mechanistically distinct from the chromosomal translocations and confer a worse prognosis [2,5,6].
      −
* '''[http://www.ccga.io/index.php/Acute_lymphoblastic_leukaemia_(ALL) Acute Lymphocytic Leukemia (ALL)]'''
+
*'''[http://www.ccga.io/index.php/Acute_lymphoblastic_leukaemia_(ALL) Acute Lymphocytic Leukemia (ALL)]'''
    
iAMP21 is an intrachromosomal amplification of chromosome 21, which includes the genes ''RUNX1'' and ''miR-802'' among others.  This amplification occurs in about 1.5-2% of all Acute Lymphocytic Leukemia cases tested and is associated with poor prognostication [5].  
 
iAMP21 is an intrachromosomal amplification of chromosome 21, which includes the genes ''RUNX1'' and ''miR-802'' among others.  This amplification occurs in about 1.5-2% of all Acute Lymphocytic Leukemia cases tested and is associated with poor prognostication [5].  
      −
* '''[http://www.ccga.io/index.php/T-ALL T-cell Acute Lymphocytic Leukemia (T-ALL)]'''
+
*'''[http://www.ccga.io/index.php/T-ALL T-cell Acute Lymphocytic Leukemia (T-ALL)]'''
    
''RUNX1'' mutations have been described in 20% of patients with early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) [6].
 
''RUNX1'' mutations have been described in 20% of patients with early T-cell precursor acute lymphoblastic leukemia (ETP-ALL) [6].
      −
* '''[http://www.ccga.io/index.php?title=B_lymphoblastic_leukaemia/lymphoma_with_t(12;21)(p13;q22);_TEL-AML1_(ETV6-RUNX1)_positive&redirect=no B-cell Acute Lymphocytic Leukemia (B-ALL)]'''
+
*'''[http://www.ccga.io/index.php?title=B_lymphoblastic_leukaemia/lymphoma_with_t(12;21)(p13;q22);_TEL-AML1_(ETV6-RUNX1)_positive&redirect=no B-cell Acute Lymphocytic Leukemia (B-ALL)]'''
    
The most common chromosomal translocation is t(12;21)(p13;q22) resulting in ETV6-RUNX1 fusion in B-cell acute lymphocytic leukemia (B-ALL) [2].  This translocation occurs in 25% of Pediatric B-ALL but only 2% of Adult B-ALL [5, 6], and confers a favorable prognosis in B-ALL and other neoplasms [2,5,6].  iAMP21 is an intrachromosomal amplification of chromosome 21 which includes the genes ''RUNX1'' and ''miR-802'' among others.  This amplification occurs in about 2% of all B-cell Acute Lymphocytic Leukemia cases tested and is associated with poor prognostication [6].  
 
The most common chromosomal translocation is t(12;21)(p13;q22) resulting in ETV6-RUNX1 fusion in B-cell acute lymphocytic leukemia (B-ALL) [2].  This translocation occurs in 25% of Pediatric B-ALL but only 2% of Adult B-ALL [5, 6], and confers a favorable prognosis in B-ALL and other neoplasms [2,5,6].  iAMP21 is an intrachromosomal amplification of chromosome 21 which includes the genes ''RUNX1'' and ''miR-802'' among others.  This amplification occurs in about 2% of all B-cell Acute Lymphocytic Leukemia cases tested and is associated with poor prognostication [6].  
      −
* '''Chronic Myeloid Leukemia (CML)'''
+
*'''Chronic Myeloid Leukemia (CML)'''
    
A number of simple mutations in ''RUNX1'' have been reported in CML patients, and these mutations may be in part responsible for progression from the chronic phase to blast crisis (BC) [7].
 
A number of simple mutations in ''RUNX1'' have been reported in CML patients, and these mutations may be in part responsible for progression from the chronic phase to blast crisis (BC) [7].
      −
* '''[http://www.ccga.io/index.php/MDS Myelodysplastic Syndrome (MDS)]'''
+
*'''[http://www.ccga.io/index.php/MDS Myelodysplastic Syndrome (MDS)]'''
    
A high frequency (42%) of ''RUNX1'' mutations has been reported among radiation-associated and therapy-related Myelodysplastic Syndrome (MDS) patients [8].  
 
A high frequency (42%) of ''RUNX1'' mutations has been reported among radiation-associated and therapy-related Myelodysplastic Syndrome (MDS) patients [8].  
      −
* '''CCUS (Clonal cytopenia of undetermined significance) or ICUS (Idiopathic cytopenia of undetermined significance )'''
+
*'''CCUS (Clonal cytopenia of undetermined significance) or ICUS (Idiopathic cytopenia of undetermined significance )'''
    
''RUNX1'' mutations are more common in clonal cytopenia of undetermined significance (CCUS) [2].
 
''RUNX1'' mutations are more common in clonal cytopenia of undetermined significance (CCUS) [2].
      −
* '''Familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML)'''
+
*'''Familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML)'''
    
Germline mutations of ''RUNX1'' have been reported in the rare autosomal dominant Familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML) [8].
 
Germline mutations of ''RUNX1'' have been reported in the rare autosomal dominant Familial platelet disorder with predisposition to acute myeloid leukemia (FPD/AML) [8].
Line 75: Line 76:  
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
! Copy Number Loss   !! Copy Number Gain   !! LOH   !!   Loss-of-Function Mutation   !! Gain-of-Function Mutation !! Translocation/Fusion  
+
!Copy Number Loss!!Copy Number Gain!!LOH!!Loss-of-Function Mutation!!Gain-of-Function Mutation!!Translocation/Fusion
 
|-
 
|-
| ||   ||   || X ||   || X
+
| || || ||X|| ||X
 
|}
 
|}
   Line 113: Line 114:  
'''[http://www.omim.org/entry/151385 ''RUNX1'' by OMIM]''' - compendium of human genes and genetic phenotypes
 
'''[http://www.omim.org/entry/151385 ''RUNX1'' by OMIM]''' - compendium of human genes and genetic phenotypes
   −
'''[https://databases.lovd.nl/shared/genes/RUNX1 ''RUNX1'' by LOVD(3)]''' - Leiden Open Variation Database
+
'''[https://databases.lovd.nl/shared/genes/RUNX1 ''RUNX1'' by LOVD(3)]''' - Leiden Open Variation Database
    
'''[http://www.unav.es/genetica/TICdb/results.php?hgnc=RUNX1 ''RUNX1'' by TICdb]''' - database of Translocation breakpoints In Cancer
 
'''[http://www.unav.es/genetica/TICdb/results.php?hgnc=RUNX1 ''RUNX1'' by TICdb]''' - database of Translocation breakpoints In Cancer
Line 137: Line 138:  
9. Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p140-141.
 
9. Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p140-141.
   −
== Notes ==
+
==Notes==
 
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage).  Additional global feedback or concerns are also welcome.
 
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage).  Additional global feedback or concerns are also welcome.
    
[[Category:Cancer Genes R]]
 
[[Category:Cancer Genes R]]