Difference between revisions of "MDS, MDS/MPN and MPN Tables: Recurrent Genomic Alterations Detected by Chromosomal Microarray"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
(Adding link formatting to references)
 
m (Added reference links)
Line 17: Line 17:
 
(Normal karyotype only: 11-39%)
 
(Normal karyotype only: 11-39%)
 
|Total genomic alteration
 
|Total genomic alteration
|  
+
|
|Prognostic poor survival  
+
|Prognostic poor survival
 
|<ref name=":0">Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A, et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 2008;112:3412-24.[https://www.ncbi.nlm.nih.gov/pubmed/?term=High-resolution+whole+genome+tiling+path+array+CGH+analysis+of+CD34%2B+cells+from+patients+with+low-risk+myelodysplastic+syndromes+reveals+cryptic+copy+number+alterations+and+predicts+overall+and+leukemia-free+sur]</ref><ref>Yeung CCS, McElhone S, Chen XY, Ng D, Storer BE, Deeg HJ, et al. Impact of copy neutral loss of heterozygosity and total genome aberrations on survival in myelodysplastic syndrome. Mod Pathol 2017.[https://www.ncbi.nlm.nih.gov/pubmed/?term=Impact+of+copy+neutral+loss+of+heterozygosity+and+total+genome+aberrations+on+survival+in+myelodysplastic+syndrome.]</ref><ref name=":1">Arenillas L, Mallo M, Ramos F, Guinta K, Barragan E, Lumbreras E, et al. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing. Genes Chromosomes Cancer 2013;52:1167-77.[https://www.ncbi.nlm.nih.gov/pubmed/24123380]</ref><ref>Cluzeau T, Moreilhon C, Mounier N, Karsenti JM, Gastaud L, Garnier G, et al. Total genomic alteration as measured by SNP-array-based molecular karyotyping is predictive of overall survival in a cohort of MDS or AML patients treated with azacitidine. Blood Cancer J 2013;3:e155.[https://www.ncbi.nlm.nih.gov/pubmed/24185502]</ref><ref name=":2">Ganster C, Shirneshan K, Salinas-Riester G, Braulke F, Schanz J, Platzbecker U, et al. Influence of total genomic alteration and chromosomal fragmentation on response to a combination of azacitidine and lenalidomide in a cohort of patients with very high risk MDS. Leuk Res 2015;39:1079-87.[https://www.ncbi.nlm.nih.gov/pubmed/?term=26278198]</ref>
 
|<ref name=":0">Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A, et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 2008;112:3412-24.[https://www.ncbi.nlm.nih.gov/pubmed/?term=High-resolution+whole+genome+tiling+path+array+CGH+analysis+of+CD34%2B+cells+from+patients+with+low-risk+myelodysplastic+syndromes+reveals+cryptic+copy+number+alterations+and+predicts+overall+and+leukemia-free+sur]</ref><ref>Yeung CCS, McElhone S, Chen XY, Ng D, Storer BE, Deeg HJ, et al. Impact of copy neutral loss of heterozygosity and total genome aberrations on survival in myelodysplastic syndrome. Mod Pathol 2017.[https://www.ncbi.nlm.nih.gov/pubmed/?term=Impact+of+copy+neutral+loss+of+heterozygosity+and+total+genome+aberrations+on+survival+in+myelodysplastic+syndrome.]</ref><ref name=":1">Arenillas L, Mallo M, Ramos F, Guinta K, Barragan E, Lumbreras E, et al. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing. Genes Chromosomes Cancer 2013;52:1167-77.[https://www.ncbi.nlm.nih.gov/pubmed/24123380]</ref><ref>Cluzeau T, Moreilhon C, Mounier N, Karsenti JM, Gastaud L, Garnier G, et al. Total genomic alteration as measured by SNP-array-based molecular karyotyping is predictive of overall survival in a cohort of MDS or AML patients treated with azacitidine. Blood Cancer J 2013;3:e155.[https://www.ncbi.nlm.nih.gov/pubmed/24185502]</ref><ref name=":2">Ganster C, Shirneshan K, Salinas-Riester G, Braulke F, Schanz J, Platzbecker U, et al. Influence of total genomic alteration and chromosomal fragmentation on response to a combination of azacitidine and lenalidomide in a cohort of patients with very high risk MDS. Leuk Res 2015;39:1079-87.[https://www.ncbi.nlm.nih.gov/pubmed/?term=26278198]</ref>
 
|-
 
|-
Line 24: Line 24:
 
|
 
|
 
|1p CN-LOH
 
|1p CN-LOH
|  
+
|
 
|Prognostic for progression to AML
 
|Prognostic for progression to AML
 
|<ref name=":3">Tiu RV, Gondek LP, O'Keefe CL, Elson P, Huh J, Mohamedali A, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011;117:4552-60.[https://www.ncbi.nlm.nih.gov/pubmed/21285439]</ref><ref name=":4">Gondek LP, Haddad AS, O'Keefe CL, Tiu R, Wlodarski MW, Sekeres MA, et al. Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Exp Hematol 2007;35:1728-38.[https://www.ncbi.nlm.nih.gov/pubmed/?term=17920760]</ref><ref name=":5">Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H, et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2008;68:10349-57.[https://www.ncbi.nlm.nih.gov/pubmed/19074904]</ref><ref name=":6">Sugimoto Y, Sekeres MA, Makishima H, Traina F, Visconte V, Jankowska A, et al. Cytogenetic and molecular predictors of response in patients with myeloid malignancies without del[5q] treated with lenalidomide. J Hematol Oncol 2012;5:4.[https://www.ncbi.nlm.nih.gov/pubmed/22390313]</ref><ref name=":7">Xu X, Johnson EB, Leverton L, Arthur A, Watson Q, Chang FL, et al. The advantage of using SNP array in clinical testing for hematological malignancies--a comparative study of three genetic testing methods. Cancer Genet 2013;206:317-26.[https://www.ncbi.nlm.nih.gov/pubmed/24269304]</ref>
 
|<ref name=":3">Tiu RV, Gondek LP, O'Keefe CL, Elson P, Huh J, Mohamedali A, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011;117:4552-60.[https://www.ncbi.nlm.nih.gov/pubmed/21285439]</ref><ref name=":4">Gondek LP, Haddad AS, O'Keefe CL, Tiu R, Wlodarski MW, Sekeres MA, et al. Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Exp Hematol 2007;35:1728-38.[https://www.ncbi.nlm.nih.gov/pubmed/?term=17920760]</ref><ref name=":5">Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H, et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2008;68:10349-57.[https://www.ncbi.nlm.nih.gov/pubmed/19074904]</ref><ref name=":6">Sugimoto Y, Sekeres MA, Makishima H, Traina F, Visconte V, Jankowska A, et al. Cytogenetic and molecular predictors of response in patients with myeloid malignancies without del[5q] treated with lenalidomide. J Hematol Oncol 2012;5:4.[https://www.ncbi.nlm.nih.gov/pubmed/22390313]</ref><ref name=":7">Xu X, Johnson EB, Leverton L, Arthur A, Watson Q, Chang FL, et al. The advantage of using SNP array in clinical testing for hematological malignancies--a comparative study of three genetic testing methods. Cancer Genet 2013;206:317-26.[https://www.ncbi.nlm.nih.gov/pubmed/24269304]</ref>
Line 31: Line 31:
 
|
 
|
 
|1q gain
 
|1q gain
|  
+
|
 
|Recurrent
 
|Recurrent
|<ref name=":3" /><ref>Evans AG, Ahmad A, Burack WR, Iqbal MA. Combined comparative genomic hybridization and single-nucleotide polymorphism array detects cryptic chromosomal lesions in both myelodysplastic syndromes and cytopenias of undetermined significance. Mod Pathol 2016;29:1183-99.[https://www.ncbi.nlm.nih.gov/pubmed/27389314]</ref>30<ref name=":7" />
+
|<ref name=":3" /><ref name=":8">Evans AG, Ahmad A, Burack WR, Iqbal MA. Combined comparative genomic hybridization and single-nucleotide polymorphism array detects cryptic chromosomal lesions in both myelodysplastic syndromes and cytopenias of undetermined significance. Mod Pathol 2016;29:1183-99.[https://www.ncbi.nlm.nih.gov/pubmed/27389314]</ref><ref name=":9">Hu Q, Chu Y, Song Q, Yao Y, Yang W, Huang S. The prevalence of chromosomal aberrations associated with myelodysplastic syndromes in China. Ann Hematol 2016;95:1241-8.[https://www.ncbi.nlm.nih.gov/pubmed/27225263]</ref><ref name=":7" />
 
|-
 
|-
 
|
 
|
Line 40: Line 40:
 
|''TET2''
 
|''TET2''
 
|Prognostic for poor survival
 
|Prognostic for poor survival
|<ref name=":3" />21, 23, 24, 47]
+
|<ref name=":3" /><ref name=":8" /><ref name=":10">Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009;113:6403-10.[https://www.ncbi.nlm.nih.gov/pubmed/19372255]</ref><ref name=":11">Bacher U, Weissmann S, Kohlmann A, Schindela S, Alpermann T, Schnittger S, et al. TET2 deletions are a recurrent but rare phenomenon in myeloid malignancies and are frequently accompanied by TET2 mutations on the remaining allele. Br J Haematol 2012;156:67-75.[https://www.ncbi.nlm.nih.gov/pubmed/22017486]</ref><ref name=":12">Kolquist KA, Schultz RA, Furrow A, Brown TC, Han JY, Campbell LJ, et al. Microarray-based comparative genomic hybridization of cancer targets reveals novel, recurrent genetic aberrations in the myelodysplastic syndromes. Cancer Genet 2011;204:603-28.[https://www.sciencedirect.com/science/article/pii/S2210776211002973]</ref>
 
|-
 
|-
 
|
 
|
Line 47: Line 47:
 
|''TET2''
 
|''TET2''
 
|Prognostic for poor survival
 
|Prognostic for poor survival
|[12,<ref name=":3" />16, 21, 30,<ref name=":1" /><ref name=":5" />38, 46, 64, 111]
+
|<ref name=":13">Gondek LP, Tiu R, O'Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 2008;111:1534-42.[https://www.ncbi.nlm.nih.gov/pubmed/17954704]</ref><ref name=":3" /><ref name=":14">Heinrichs S, Kulkarni RV, Bueso-Ramos CE, Levine RL, Loh ML, Li C, et al. Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics. Leukemia 2009;23:1605-13.[https://www.nature.com/articles/leu200982]</ref><ref name=":8" /><ref name=":9" /><ref name=":1" /><ref name=":5" /><ref name=":15">Mohamedali AM, Smith AE, Gaken J, Lea NC, Mian SA, Westwood NB, et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol 2009;27:4002-6.[https://www.ncbi.nlm.nih.gov/pubmed/19528370]</ref><ref name=":16">Mohamedali A, Gaken J, Twine NA, Ingram W, Westwood N, Lea NC, et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 2007;110:3365-73.[https://www.ncbi.nlm.nih.gov/pubmed/17634407]</ref><ref name=":17">Flach J, Dicker F, Schnittger S, Schindela S, Kohlmann A, Haferlach T, et al. An accumulation of cytogenetic and molecular genetic events characterizes the progression from MDS to secondary AML: an analysis of 38 paired samples analyzed by cytogenetics, molecular mutation analysis and SNP microarray profiling. Leukemia 2011;25:713-8.[https://www.nature.com/articles/leu2010304]</ref><ref name=":18">Larsson N, Lilljebjorn H, Lassen C, Johansson B, Fioretos T. Myeloid malignancies with acquired trisomy 21 as the sole cytogenetic change are clinically highly variable and display a heterogeneous pattern of copy number alterations and mutations. Eur J Haematol 2012;88:136-43.[https://www.ncbi.nlm.nih.gov/pubmed/21933280]</ref>
 
|-
 
|-
 
|
 
|
 
|
 
|
 
|5q loss
 
|5q loss
|  
+
|
 
|5q loss “size” prognostic for progression to AML
 
|5q loss “size” prognostic for progression to AML
|<ref name=":3" />15, 21<ref name=":0" />, 33, 63<ref name=":7" />112]
+
|<ref name=":3" /><ref name=":19">Huh J, Jung CW, Kim HJ, Kim YK, Moon JH, Sohn SK, et al. Different characteristics identified by single nucleotide polymorphism array analysis in leukemia suggest the need for different application strategies depending on disease category. Genes Chromosomes Cancer 2013;52:44-55.[https://www.ncbi.nlm.nih.gov/pubmed/23023762]</ref><ref name=":8" /><ref name=":0" /><ref name=":20">Jerez A, Gondek LP, Jankowska AM, Makishima H, Przychodzen B, Tiu RV, et al. Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J Clin Oncol 2012;30:1343-9.[https://www.ncbi.nlm.nih.gov/pubmed/22370328]</ref><ref name=":21">Stengel A, Kern W, Haferlach T, Meggendorfer M, Haferlach C. The 5q deletion size in myeloid malignancies is correlated to additional chromosomal aberrations and to TP53 mutations. Genes Chromosomes Cancer 2016;55:777-85. [https://www.ncbi.nlm.nih.gov/pubmed/27218649]</ref><ref name=":7" /><ref name=":22">Kunze K, Gamerdinger U, Lessig-Owlanj J, Sorokina M, Brobeil A, Tur MK, et al. Detection of an activated JAK3 variant and a Xq26.3 microdeletion causing loss of PHF6 and miR-424 expression in myelodysplastic syndromes by combined targeted next generation sequencing and SNP array analysis. Pathol Res Pract 2014;210:369-76.[https://www.ncbi.nlm.nih.gov/pubmed/24674452]</ref>
 
|-
 
|-
 
|
 
|
Line 61: Line 61:
 
|''CUX1, EZH2''
 
|''CUX1, EZH2''
 
|Prognostic for poor survival
 
|Prognostic for poor survival
|<ref name=":3" />15, 18, 30, 32, 39, 46<ref name=":6" />64, 79, 103<ref name=":7" />109, 112]
+
|<ref name=":3" /><ref name=":19" /><ref name=":23">Thiel A, Beier M, Ingenhag D, Servan K, Hein M, Moeller V, et al. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia 2011;25:387-99.[https://www.ncbi.nlm.nih.gov/pubmed/21274003]</ref><ref name=":9" /><ref name=":24">Volkert S, Haferlach T, Holzwarth J, Zenger M, Kern W, Staller M, et al. Array CGH identifies copy number changes in 11% of 520 MDS patients with normal karyotype and uncovers prognostically relevant deletions. Leukemia 2016;30:257-60.[https://www.ncbi.nlm.nih.gov/pubmed/26392226]</ref><ref name=":25">Svobodova K, Zemanova Z, Lhotska H, Novakova M, Podskalska L, Belickova M, et al. Copy number neutral loss of heterozygosity at 17p and homozygous mutations of TP53 are associated with complex chromosomal aberrations in patients newly diagnosed with myelodysplastic syndromes. Leuk Res 2016;42:7-12.[https://www.ncbi.nlm.nih.gov/pubmed/26851439]</ref><ref name=":16" /><ref name=":6" /><ref name=":17" /><ref name=":26">Babushok DV, Xie HM, Roth JJ, Perdigones N, Olson TS, Cockroft JD, et al. Single nucleotide polymorphism array analysis of bone marrow failure patients reveals characteristic patterns of genetic changes. Br J Haematol 2014;164:73-82.[https://www.ncbi.nlm.nih.gov/pubmed/24116929]</ref><ref name=":27">Stevens-Kroef MJ, Hebeda KM, Verwiel ET, Kamping EJ, van Cleef PH, Kuiper RP, et al. Microarray-based genomic profiling and in situ hybridization on fibrotic bone marrow biopsies for the identification of numerical chromosomal abnormalities in myelodysplastic syndrome. Mol Cytogenet 2015;8:33.[https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4447009/]</ref><ref name=":7" /><ref name=":28">Barresi V, Palumbo GA, Musso N, Consoli C, Capizzi C, Meli CR, et al. Clonal selection of 11q CN-LOH and CBL gene mutation in a serially studied patient during MDS progression to AML. Leuk Res 2010;34:1539-42.[https://www.ncbi.nlm.nih.gov/pubmed/20674974]</ref><ref name=":22" />
 
|-
 
|-
 
|
 
|
 
|
 
|
 
|7q CN-LOH
 
|7q CN-LOH
|  
+
|
|Recurrent  
+
|Recurrent
|[12, <ref name=":3" />21,<ref name=":4" /> 30, <ref name=":5" /><ref name=":2" /> 92, 111]
+
|<ref name=":13" /><ref name=":3" /><ref name=":8" /><ref name=":4" /><ref name=":9" /><ref name=":5" /><ref name=":2" /> 92<ref name=":18" />
 
|-
 
|-
 
|
 
|
Line 75: Line 75:
 
|''CBL''
 
|''CBL''
 
|Prognostic/ recurrent
 
|Prognostic/ recurrent
|[12, <ref name=":3" /> 15, <ref name=":4" /> <ref name=":1" /><ref name=":5" />64<ref name=":7" />
+
|<ref name=":13" /><ref name=":3" /><ref name=":19" /><ref name=":4" /> <ref name=":1" /><ref name=":5" /><ref name=":17" /><ref name=":7" />
 
|-
 
|-
 
|
 
|
Line 82: Line 82:
 
|''ETV6''
 
|''ETV6''
 
|Recurrent
 
|Recurrent
|<ref name=":3" />16, 30, 32, 47]
+
|<ref name=":3" /><ref name=":14" /><ref name=":9" /><ref name=":24" /><ref name=":12" />
 
|-
 
|-
 
|
 
|
Line 89: Line 89:
 
|''?RB1''
 
|''?RB1''
 
|Recurrent
 
|Recurrent
|<ref name=":3" /> 21, 32,<ref name=":1" /><ref name=":7" />
+
|<ref name=":3" /><ref name=":8" /><ref name=":24" /><ref name=":1" /><ref name=":7" />
 
|-
 
|-
 
|
 
|
Line 96: Line 96:
 
|''TP53''
 
|''TP53''
 
|Recurrent
 
|Recurrent
|<ref name=":3" />30, 34, 47, 103]
+
|<ref name=":3" /><ref name=":9" />34<ref name=":12" /><ref name=":27" />
 
|-
 
|-
 
|
 
|
Line 103: Line 103:
 
|''TP53''
 
|''TP53''
 
|Diagnostic for advanced MDS/sAML
 
|Diagnostic for advanced MDS/sAML
|[21, 30,<ref name=":1" /><ref name=":5" /> 39]
+
|<ref name=":8" /><ref name=":9" /><ref name=":1" /><ref name=":5" /><ref name=":25" />
 
|-
 
|-
 
|
 
|
 
|
 
|
 
|20q loss
 
|20q loss
|  
+
|
 
|Recurrent
 
|Recurrent
|<ref name=":3" /><ref name=":6" />62, 65, 103, 109,  112]
+
|<ref name=":3" /><ref name=":6" />62, 65<ref name=":27" /><ref name=":28" /><ref name=":22" />
 
|-
 
|-
 
|
 
|
Line 117: Line 117:
 
|''RUNX1''
 
|''RUNX1''
 
|Prognostic for progression to AML
 
|Prognostic for progression to AML
|<ref name=":3" />18, 32, 47<ref name=":6" />92]
+
|<ref name=":3" /><ref name=":23" /><ref name=":24" /><ref name=":12" /><ref name=":6" />92]
 
|-
 
|-
 
|MDS/MPN
 
|MDS/MPN
Line 124: Line 124:
 
|''TET2''
 
|''TET2''
 
|Recurrent
 
|Recurrent
|[12, 20, 23, 64, 65]
+
|<ref name=":13" />20<ref name=":10" /><ref name=":17" />65]
 
|-
 
|-
 
|
 
|
Line 131: Line 131:
 
|''Likely CUX1''
 
|''Likely CUX1''
 
|Recurrent
 
|Recurrent
|[12, 20<ref name=":5" /><ref name=":6" />64]
+
|<ref name=":13" />20<ref name=":5" /><ref name=":6" /><ref name=":17" />
 
|-
 
|-
 
|
 
|
Line 138: Line 138:
 
|''CBL''
 
|''CBL''
 
|Recurrent
 
|Recurrent
|[12, 20, 23, <ref name=":5" />44]
+
|<ref name=":13" />20<ref name=":10" /><ref name=":5" />44]
 
|-
 
|-
 
|MPN
 
|MPN
 
|>56%/NA
 
|>56%/NA
|1q gain  
+
|1q gain
|  
+
|
 
|Recurrent
 
|Recurrent
 
|[40, 55, 56]
 
|[40, 55, 56]
Line 152: Line 152:
 
|''TET2''
 
|''TET2''
 
|Prognostic for progression to AML
 
|Prognostic for progression to AML
|[24, 58]
+
|<ref name=":11" />58]
 
|-
 
|-
 
|
 
|
Line 164: Line 164:
 
|
 
|
 
|14q CN-LOH
 
|14q CN-LOH
|  
+
|
 
|Presence of CNAs/CN-LOH prognostic for progression to AML
 
|Presence of CNAs/CN-LOH prognostic for progression to AML
 
|[40, 55, 56<ref name=":6" />
 
|[40, 55, 56<ref name=":6" />
Line 171: Line 171:
 
|
 
|
 
|20q loss
 
|20q loss
|  
+
|
 
|Recurrent
 
|Recurrent
 
|[40, 55, 114]
 
|[40, 55, 114]
Line 185: Line 185:
 
|
 
|
 
|2q CN-LOH
 
|2q CN-LOH
|  
+
|
 
|Diagnostic (only seen in BC)
 
|Diagnostic (only seen in BC)
 
|[52]
 
|[52]
Line 191: Line 191:
 
|
 
|
 
|
 
|
|8p CN-LOH  
+
|8p CN-LOH
|  
+
|
 
|Diagnostic (only seen in BC)
 
|Diagnostic (only seen in BC)
 
|[52]
 
|[52]
Line 201: Line 201:
 
|''?HLA genes''
 
|''?HLA genes''
 
|Recurrent
 
|Recurrent
|[78-80]
+
|[78<ref name=":26" />80]
 
|}
 
|}
  
Line 223: Line 223:
 
|3
 
|3
 
|
 
|
 
+
<ref name=":19" /><ref name=":3" />62]
[15]
 
 
 
<ref name=":3" />62]
 
 
|-
 
|-
 
|1
 
|1
Line 244: Line 241:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|<ref name=":3" />21, 30<ref name=":7" />
+
|<ref name=":3" /><ref name=":8" /><ref name=":9" /><ref name=":7" />
 
|-
 
|-
 
|2
 
|2
Line 253: Line 250:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|<ref name=":3" /> 63, 64, 115]
+
|<ref name=":3" /><ref name=":21" /><ref name=":17" />115]
 
|-
 
|-
 
|3
 
|3
Line 262: Line 259:
 
|Recurrent
 
|Recurrent
 
|3
 
|3
|<ref name=":3" />16, 19, 35, 61]
+
|<ref name=":3" /><ref name=":14" />19, 35, 61]
 
|-
 
|-
 
|4
 
|4
Line 271: Line 268:
 
|T***
 
|T***
 
|2
 
|2
|<ref name=":3" />18, 21, 23, 24, 32,  47]
+
|<ref name=":3" /><ref name=":23" /><ref name=":8" /><ref name=":10" /><ref name=":11" />32<ref name=":12" />
 
|-
 
|-
 
|4
 
|4
Line 280: Line 277:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|[12, <ref name=":3" />16, 21, 29, 30,  <ref name=":5" />38, 46, 64, 111]
+
|<ref name=":13" /><ref name=":3" /><ref name=":14" /><ref name=":8" />29<ref name=":9" /><ref name=":5" /><ref name=":15" /><ref name=":16" /><ref name=":17" /><ref name=":18" />
 
|-
 
|-
 
|5
 
|5
Line 298: Line 295:
 
|D, P (Good  when isolated)
 
|D, P (Good  when isolated)
 
|1
 
|1
|<ref name=":3" />, 15,16, 18, 19, 21<ref name=":0" />,  30, 33, 34, <ref name=":1" />, 39, 43, 46, <ref name=":2" /> 62-65, 103<ref name=":7" />112, 116]
+
|<ref name=":3" /><ref name=":19" /><ref name=":14" /><ref name=":23" />19<ref name=":8" /><ref name=":0" /><ref name=":9" /><ref name=":20" />34, <ref name=":1" /><ref name=":25" />43<ref name=":16" /><ref name=":2" /> 62<ref name=":21" /><ref name=":17" />65<ref name=":27" /><ref name=":7" /><ref name=":22" />116]
 
|-
 
|-
 
|7
 
|7
Line 307: Line 304:
 
|D, P  (Intermediate)
 
|D, P  (Intermediate)
 
|1
 
|1
|<ref name=":3" />15, 18, 19,<ref name=":0" /> 30,  32, 34, 39, 46, <ref name=":2" /><ref name=":6" />79, 103<ref name=":7" />112]
+
|<ref name=":3" /><ref name=":19" /><ref name=":23" />19,<ref name=":0" /><ref name=":9" /><ref name=":24" />34<ref name=":25" /><ref name=":16" /><ref name=":2" /><ref name=":6" /><ref name=":26" /><ref name=":27" /><ref name=":7" /><ref name=":22" />
 
|-
 
|-
 
|7
 
|7
Line 316: Line 313:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|[12, <ref name=":3" />16, 19, 21,<ref name=":4" /> 30<ref name=":5" /><ref name=":2" />92, 111]
+
|<ref name=":13" /><ref name=":3" /><ref name=":14" />19<ref name=":8" /><ref name=":4" /><ref name=":9" /><ref name=":5" /><ref name=":2" />92<ref name=":18" />
 
|-
 
|-
 
|7
 
|7
Line 325: Line 322:
 
|D, P (Poor)
 
|D, P (Poor)
 
|1
 
|1
|[34, 39, 46, 64, 79, 103<ref name=":7" />109, 112]
+
|[34<ref name=":25" /><ref name=":16" /><ref name=":17" /><ref name=":26" /><ref name=":27" /><ref name=":7" /><ref name=":28" /><ref name=":22" />
 
|-
 
|-
 
|8
 
|8
Line 334: Line 331:
 
|P  (Intermediate)**
 
|P  (Intermediate)**
 
|1
 
|1
|<ref name=":3" />21, 30, 34, 47, <ref name=":2" /><ref name=":6" /> 62, 74, 79, 103, 112]
+
|<ref name=":3" /><ref name=":8" /><ref name=":9" />34<ref name=":12" /><ref name=":2" /><ref name=":6" /> 62, 74<ref name=":26" /><ref name=":27" /><ref name=":22" />
 
|-
 
|-
 
|9
 
|9
Line 343: Line 340:
 
|Recurrent
 
|Recurrent
 
|3
 
|3
|<ref name=":3" />30, 47]
+
|<ref name=":3" /><ref name=":9" /><ref name=":12" />
 
|-
 
|-
 
|9
 
|9
Line 352: Line 349:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|<ref name=":3" />31,<ref name=":1" />]
+
|<ref name=":3" />31,<ref name=":1" />
 
|-
 
|-
 
|11
 
|11
Line 370: Line 367:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|[12,<ref name=":3" /> 15, 25,<ref name=":1" /><ref name=":5" /> 64<ref name=":7" />109]
+
|<ref name=":13" /><ref name=":3" /><ref name=":19" />25,<ref name=":1" /><ref name=":5" /><ref name=":17" /><ref name=":7" /><ref name=":28" />
 
|-
 
|-
 
|11
 
|11
Line 379: Line 376:
 
|Recurrent
 
|Recurrent
 
|3
 
|3
|<ref name=":3" /> 16<ref name=":0" />30, 64]
+
|<ref name=":3" /><ref name=":14" /><ref name=":0" /><ref name=":9" /><ref name=":17" />
 
|-
 
|-
 
|12
 
|12
Line 388: Line 385:
 
|D, P (Good)
 
|D, P (Good)
 
|1
 
|1
|<ref name=":3" />16, 30, 32, 47]
+
|<ref name=":3" /><ref name=":14" /><ref name=":9" /><ref name=":24" /><ref name=":12" />
 
|-
 
|-
 
|12
 
|12
Line 397: Line 394:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|<ref name=":1" />, 64]
+
|<ref name=":1" /><ref name=":17" />
 
|-
 
|-
 
|13
 
|13
Line 406: Line 403:
 
|D, P  (Intermediate)
 
|D, P  (Intermediate)
 
|2
 
|2
|<ref name=":3" />21,<ref name=":1" /><ref name=":7" />
+
|<ref name=":3" /><ref name=":8" /><ref name=":1" /><ref name=":7" />
 
|-
 
|-
 
|13
 
|13
Line 415: Line 412:
 
|Recurrent
 
|Recurrent
 
|3
 
|3
|<ref name=":3" /><ref name=":5" />64]
+
|<ref name=":3" /><ref name=":5" /><ref name=":17" />
 
|-
 
|-
 
|13
 
|13
Line 433: Line 430:
 
|Recurrent
 
|Recurrent
 
|3
 
|3
|<ref name=":3" />15, 25, 29<ref name=":5" />
+
|<ref name=":3" /><ref name=":19" /> 25, 29<ref name=":5" />
 
|-
 
|-
 
|16
 
|16
Line 442: Line 439:
 
|Recurrent
 
|Recurrent
 
|3
 
|3
|<ref name=":3" />47<ref name=":7" />
+
|<ref name=":3" /><ref name=":12" /><ref name=":7" />
 
|-
 
|-
 
|16
 
|16
Line 460: Line 457:
 
|P (Poor)
 
|P (Poor)
 
|1
 
|1
|<ref name=":3" />30, 34, 43, 47, <ref name=":2" /> 103]
+
|<ref name=":3" /><ref name=":9" />34, 43<ref name=":12" /><ref name=":2" /><ref name=":27" />
 
|-
 
|-
 
|17
 
|17
Line 469: Line 466:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|[16, 21, 30, 33,<ref name=":1" /><ref name=":5" />39<ref name=":2" />]
+
|<ref name=":14" /><ref name=":8" /><ref name=":9" /><ref name=":20" /><ref name=":1" /><ref name=":5" /><ref name=":25" /><ref name=":2" />
 
|-
 
|-
 
|17
 
|17
Line 478: Line 475:
 
|Recurrent
 
|Recurrent
 
|3
 
|3
|[32, 47]
+
|<ref name=":24" /><ref name=":12" />
 
|-
 
|-
 
|17
 
|17
Line 496: Line 493:
 
|Recurrent
 
|Recurrent
 
|3
 
|3
|<ref name=":6" />64]
+
|<ref name=":6" /><ref name=":17" />
 
|-
 
|-
 
|19
 
|19
Line 532: Line 529:
 
|P (Good)**
 
|P (Good)**
 
|1
 
|1
|<ref name=":3" /> 21<ref name=":0" /> 43,<ref name=":2" /><ref name=":6" />62, 65, 92, 103, 109, 112]
+
|<ref name=":3" /><ref name=":8" /><ref name=":0" /> 43,<ref name=":2" /><ref name=":6" />62, 65, 92<ref name=":27" /><ref name=":28" />112<ref name=":19" /> 30, 46, 114, 117]
 
 
[15, 30, 46, 114, 117]
 
 
|-
 
|-
 
|20
 
|20
Line 542: Line 537:
 
|''ASXL1''
 
|''ASXL1''
 
|Recurrent
 
|Recurrent
|2  
+
|2
 
|<ref name=":2" />92]
 
|<ref name=":2" />92]
 
|-
 
|-
Line 552: Line 547:
 
|D, P (Poor)
 
|D, P (Poor)
 
|2
 
|2
|<ref name=":3" /> 16, 18, 21, 32, 34, 47]
+
|<ref name=":3" /><ref name=":14" /><ref name=":23" />21<ref name=":24" />34<ref name=":12" />
 
|-
 
|-
 
|21
 
|21
Line 561: Line 556:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|<ref name=":3" /> 25, <ref name=":2" />111, 116]
+
|<ref name=":3" /> 25, <ref name=":2" /><ref name=":18" />116]
 
|-
 
|-
 
|21
 
|21
Line 570: Line 565:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|<ref name=":3" />30, 103]
+
|<ref name=":3" /><ref name=":9" /><ref name=":27" />
 
|-
 
|-
 
|22
 
|22
Line 590: Line 585:
 
|'''Clinical Significance*'''
 
|'''Clinical Significance*'''
 
|'''Level of Evidence'''
 
|'''Level of Evidence'''
|'''References'''  
+
|'''References'''
 
|-
 
|-
 
|1
 
|1
 
|MDS/MPN
 
|MDS/MPN
 
|CN-LOH
 
|CN-LOH
|1p21.3  
+
|1p21.3
 
|''MPL''
 
|''MPL''
 
|Recurrent
 
|Recurrent
Line 608: Line 603:
 
|Recurrent<sup>**</sup>
 
|Recurrent<sup>**</sup>
 
|2
 
|2
|[23]
+
|<ref name=":10" />
 
|-
 
|-
 
|4
 
|4
 
|MDS/MPN
 
|MDS/MPN
 
|CN-LOH
 
|CN-LOH
|4q12.4-qter  
+
|4q12.4-qter
 
|''TET2''
 
|''TET2''
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|[12, 20, 23<ref name=":5" /> 64, 65]
+
|<ref name=":13" />20<ref name=":10" /><ref name=":5" /><ref name=":17" />65]
 
|-
 
|-
 
|5
 
|5
Line 626: Line 621:
 
|P  (Intermediate)
 
|P  (Intermediate)
 
|1
 
|1
|[23, 28, 33, 44, 56, 63]
+
|[23, 28<ref name=":20" />44, 56<ref name=":21" />
 
|-
 
|-
 
|7
 
|7
Line 635: Line 630:
 
|P (Poor)
 
|P (Poor)
 
|1
 
|1
|[12, 44]
+
|<ref name=":13" />44]
 
|-
 
|-
 
|7
 
|7
Line 644: Line 639:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|[12, 20<ref name=":5" /><ref name=":6" />64]
+
|<ref name=":13" />20<ref name=":5" /><ref name=":6" /><ref name=":17" />
 
|-
 
|-
 
|8
 
|8
Line 653: Line 648:
 
|P (Poor)
 
|P (Poor)
 
|1
 
|1
|[56, 64]
+
|[56<ref name=":17" />
 
|-
 
|-
 
|9
 
|9
 
|MDS/MPN
 
|MDS/MPN
 
|CN-LOH
 
|CN-LOH
|9pter-p13.3  
+
|9pter-p13.3
 
|''JAK2''
 
|''JAK2''
 
|Recurrent
 
|Recurrent
Line 667: Line 662:
 
|MDS/MPN
 
|MDS/MPN
 
|CN-LOH
 
|CN-LOH
|11q13.2-qter  
+
|11q13.2-qter
 
|''CBL''
 
|''CBL''
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|[12, 20, 23<ref name=":5" />
+
|<ref name=":13" />20<ref name=":10" /><ref name=":5" />
 
|-
 
|-
 
|12
 
|12
Line 725: Line 720:
 
|P  (Intermediate)
 
|P  (Intermediate)
 
|2
 
|2
|[20, 23]
+
|[20<ref name=":10" />
 
|-
 
|-
 
|21
 
|21
 
|MDS/MPN
 
|MDS/MPN
 
|CN-LOH
 
|CN-LOH
|21q22-qter  
+
|21q22-qter
 
|''RUNX1''
 
|''RUNX1''
 
|Recurrent
 
|Recurrent
Line 761: Line 756:
 
|MPN
 
|MPN
 
|Gain
 
|Gain
|1q21.2-q32.1  
+
|1q21.2-q32.1
|  
+
|
 
|Recurrent
 
|Recurrent
 
|2
 
|2
Line 774: Line 769:
 
|Recurrent
 
|Recurrent
 
|2
 
|2
|[24, 58]
+
|<ref name=":11" />58]
 
|-
 
|-
 
|5
 
|5
Line 783: Line 778:
 
|P (Poor)
 
|P (Poor)
 
|1
 
|1
|[63]
+
|<ref name=":21" />
 
|-
 
|-
 
|6
 
|6
Line 806: Line 801:
 
|MPN
 
|MPN
 
|CN-LOH
 
|CN-LOH
|7q22.1-qter  
+
|7q22.1-qter
 
|''EZH2, CUX1''
 
|''EZH2, CUX1''
 
|Recurrent
 
|Recurrent
Line 843: Line 838:
 
|Loss
 
|Loss
 
|9q34
 
|9q34
|  
+
|
 
|Recurrent
 
|Recurrent
 
|3
 
|3
Line 860: Line 855:
 
|MPN
 
|MPN
 
|CN-LOH
 
|CN-LOH
|11q13.4-q25   
+
|11q13.4-q25 
 
|''CBL''
 
|''CBL''
 
|Recurrent
 
|Recurrent
Line 915: Line 910:
 
|Loss
 
|Loss
 
|22q11.2
 
|22q11.2
|  
+
|
 
|Recurrent
 
|Recurrent
 
|3
 
|3
Line 929: Line 924:
 
|[51]
 
|[51]
 
|}
 
|}
 +
<references />

Revision as of 16:36, 3 January 2020

Table 1. Evidence for the clinical utility of chromosomal microarray testing (CMA) in myeloid disorders excluding acute myeloid leukemia

Disease Overall CMA detection rate Key and unique

CMA aberrations

Altered

gene(s)

Impact References
MDS 28-83%

(Normal karyotype only: 11-39%)

Total genomic alteration Prognostic poor survival [1][2][3][4][5]
1p CN-LOH Prognostic for progression to AML [6][7][8][9][10]
1q gain Recurrent [6][11][12][10]
4q loss TET2 Prognostic for poor survival [6][11][13][14][15]
4q CN-LOH TET2 Prognostic for poor survival [16][6][17][11][12][3][8][18][19][20][21]
5q loss 5q loss “size” prognostic for progression to AML [6][22][11][1][23][24][10][25]
7q loss CUX1, EZH2 Prognostic for poor survival [6][22][26][12][27][28][19][9][20][29][30][10][31][25]
7q CN-LOH Recurrent [16][6][11][7][12][8][5] 92[21]
11q CN-LOH CBL Prognostic/ recurrent [16][6][22][7] [3][8][20][10]
12p loss ETV6 Recurrent [6][17][12][27][15]
13q loss ?RB1 Recurrent [6][11][27][3][10]
17p loss TP53 Recurrent [6][12]34[15][30]
17p CN-LOH TP53 Diagnostic for advanced MDS/sAML [11][12][3][8][28]
20q loss Recurrent [6][9]62, 65[30][31][25]
21q CN-LOH or deletion RUNX1 Prognostic for progression to AML [6][26][27][15][9]92]
MDS/MPN 73%/NA 4q CN-LOH TET2 Recurrent [16]20[13][20]65]
7q CN-LOH Likely CUX1 Recurrent [16]20[8][9][20]
11q CN-LOH CBL Recurrent [16]20[13][8]44]
MPN >56%/NA 1q gain Recurrent [40, 55, 56]
4q loss TET2 Prognostic for progression to AML [14]58]
9p CN-LOH JAK2 Predictive for JAK2 inhibitors; Prognostic for PV progression to MF [40, 44, 55, 56, 113]
14q CN-LOH Presence of CNAs/CN-LOH prognostic for progression to AML [40, 55, 56[9]
20q loss Recurrent [40, 55, 114]
CML 21-24%/NA 17p loss TP53 Recurrent, progression, associated with TKI resistance [51, 52]
2q CN-LOH Diagnostic (only seen in BC) [52]
8p CN-LOH Diagnostic (only seen in BC) [52]
BMFS 19% (AA) 6p CN-LOH ?HLA genes Recurrent [78[29]80]

Table 2.  A comprehensive list of CNAs and CN-LOH of known or likely clinical significance in MDS detected by CMA testing

Chromosome Disease Abnormality Type (Gain, Loss, CN-LOH) Region Relevant Genes (if known) Clinical Significance* Level of Evidence References
1 MDS Gain 1p36.33-p33 MPL Recurrent 3

[22][6]62]

1 MDS CN-LOH 1p MPL Recurrent 2 [6][7][8][9]
1 MDS Gain 1q Recurrent 2 [6][11][12][10]
2 MDS CN-LOH 2pter-2p13.3 DNMT3A Recurrent 2 [6][24][20]115]
3 MDS CN-LOH 3q21.3-qter MECOM, GATA2 Recurrent 3 [6][17]19, 35, 61]
4 MDS Loss 4q24 TET2 T*** 2 [6][26][11][13][14]32[15]
4 MDS CN-LOH 4q12-qter TET2 Recurrent 2 [16][6][17][11]29[12][8][18][19][20][21]
5 MDS Gain 5p Suggestive of i(5p) with 5q del Recurrent 3 [6]
5 MDS Loss 5q RPS14 D, P (Good when isolated) 1 [6][22][17][26]19[11][1][12][23]34, [3][28]43[19][5] 62[24][20]65[30][10][25]116]
7 MDS Loss 7q EZH2, CUX1 D, P (Intermediate) 1 [6][22][26]19,[1][12][27]34[28][19][5][9][29][30][10][25]
7 MDS CN-LOH 7q21.11-qter EZH2, CUX1 Recurrent 2 [16][6][17]19[11][7][12][8][5]92[21]
7 MDS Loss (Monosomy) 7 Whole Chromosome D, P (Poor) 1 [34[28][19][20][29][30][10][31][25]
8 MDS Gain (Trisomy) 8 Whole Chromosome P (Intermediate)** 1 [6][11][12]34[15][5][9] 62, 74[29][30][25]
9 MDS Gain 9p JAK2 Recurrent 3 [6][12][15]
9 MDS CN-LOH 9pter-p24.2 JAK2 Recurrent 2 [6]31,[3]
11 MDS Loss 11q14.1-q24.3 CBL D, P (Very Good) 1 [6] 62]
11 MDS CN-LOH 11q13.3-qter CBL Recurrent 2 [16][6][22]25,[3][8][20][10][31]
11 MDS Gain (Trisomy and q-arm) 11 / 11q CBL Recurrent 3 [6][17][1][12][20]
12 MDS Loss 12p ETV6 D, P (Good) 1 [6][17][12][27][15]
12 MDS CN-LOH 12pter-p11.23 ETV6 Recurrent 2 [3][20]
13 MDS Loss 13q RB1 D, P (Intermediate) 2 [6][11][3][10]
13 MDS CN-LOH 13q12.3-qter FLT3, RB1 Recurrent 3 [6][8][20]
13 MDS Gain (Trisomy) 13 Whole Chromosome Recurrent 3 [6]
14 MDS CN-LOH 14q24.2-qter CHGA Recurrent 3 [6][22] 25, 29[8]
16 MDS Loss (Monosomy and q-arm) 16 / 16q CDH1 Recurrent 3 [6][15][10]
16 MDS CN-LOH 16q22.1-qter CDH1 Recurrent 3 [6]92]
17 MDS Loss 17p TP53 P (Poor) 1 [6][12]34, 43[15][5][30]
17 MDS CN-LOH 17pter-p11.2 TP53 Recurrent 2 [17][11][12][23][3][8][28][5]
17 MDS Loss 17q11.2 NF1 Recurrent 3 [27][15]
17 MDS CN-LOH 17q11.2-qter SRSF2, NF1 Recurrent 2 [6]19, 25]
19 MDS CN-LOH 19pter-p13.11 DNMT1, PRDX2 Recurrent 3 [9][20]
19 MDS Loss 19p13.13 PRDX2 Recurrent 3 [1]
19 MDS Gain (Trisomy) 19 Whole Chromosome Recurrent 2 [6][9]
20 MDS Gain 20p Suggestive of ider(20p) with 20q del Recurrent 3 [6]
20 MDS Loss 20q ASXL1 P (Good)** 1 [6][11][1] 43,[5][9]62, 65, 92[30][31]112[22] 30, 46, 114, 117]
20 MDS CN-LOH 20q11.21-qter ASXL1 Recurrent 2 [5]92]
21 MDS Loss 21q22.12 RUNX1 D, P (Poor) 2 [6][17][26]21[27]34[15]
21 MDS CN-LOH 21q21.1-qter RUNX1, U2AF1 Recurrent 2 [6] 25, [5][21]116]
21 MDS Gain (Trisomy) 21 Whole Chromosome Recurrent 2 [6][12][30]
22 MDS CN-LOH 22q11.23-qter MN1, SF3A1, EP300 Recurrent 3 [6][10]

Table 3.  A comprehensive list of CNAs and CN-LOH of known or likely clinical significance in MDS/MPN detected by CMA testing

Chromosome Disease Abnormality Type (Gain, Loss, CN-LOH) Region Relevant Genes (if known) Clinical Significance* Level of Evidence References
1 MDS/MPN CN-LOH 1p21.3 MPL Recurrent 2 [37]
4 MDS/MPN Loss 4q24 TET2 Recurrent** 2 [13]
4 MDS/MPN CN-LOH 4q12.4-qter TET2 Recurrent 2 [16]20[13][8][20]65]
5 MDS/MPN Loss (Monosomy and q-arm) 5 / 5q RPS14 P (Intermediate) 1 [23, 28[23]44, 56[24]
7 MDS/MPN Loss 7q EZH2, CUX1 P (Poor) 1 [16]44]
7 MDS/MPN CN-LOH 7q21.11-qter EZH2, CUX1 Recurrent 2 [16]20[8][9][20]
8 MDS/MPN Gain (Trisomy) 8 Whole chromosome P (Poor) 1 [56[20]
9 MDS/MPN CN-LOH 9pter-p13.3 JAK2 Recurrent 2 [8]
11 MDS/MPN CN-LOH 11q13.2-qter CBL Recurrent 2 [16]20[13][8]
12 MDS/MPN Loss 12p ETV6 P (Intermediate) 1 [20, 28]
13 MDS/MPN Loss 13q RB1 P (Intermediate) 1 [44, 56]
14 MDS/MPN CN-LOH 14q CHGA Recurrent 3 [8]
17 MDS/MPN Loss 17p TP53 P (Poor)*** 1 [56]
20 MDS/MPN Loss 20q ASXL1 P (Intermediate) 2 [44]
21 MDS/MPN Gain 21q22.12 RUNX1 P (Intermediate) 2 [20[13]
21 MDS/MPN CN-LOH 21q22-qter RUNX1 Recurrent 2 [20[8]

Table 4. A comprehensive list of CNAs and CN-LOH of known or likely clinical significance in

MPN detected by CMA testing

Chromosome Disease Abnormality Type (Gain, Loss, CN-LOH) Region Relevant Genes (if known) Clinical Significance* Level of Evidence Reference (PMID)
1 MPN CN-LOH 1p21.3 MPL Recurrent 2 [40]
1 MPN Gain 1q21.2-q32.1 Recurrent 2 [40, 55, 56]
4 MPN Loss 4q24 TET2 Recurrent 2 [14]58]
5 MPN Loss 5q RPS14 P (Poor) 1 [24]
6 MPN Loss 6p23-22.3 JARID2 Recurrent 3 [56, 60]
7 MPN Loss 7q EZH2, CUX1 P (Poor) 1 [40]
7 MPN CN-LOH 7q22.1-qter EZH2, CUX1 Recurrent 2 [52]
8 MPN Gain (Trisomy) 8 Whole chromosome P (Poor) 1 [51]
9 MPN Gain 9p JAK2 Recurrent 2 [40, 55, 56]
9 MPN CN-LOH 9pter-p13.3 JAK2 Recurrent 2 [40, 44] [55] [56, 113]
9 CML Loss 9q34 Recurrent 3 [50, 51]
9 CML Gain 9q34 (+Ph) ABL1 Recurrent 1 [51]
11 MPN CN-LOH 11q13.4-q25  CBL Recurrent 2 [40, 55]
12 MPN Loss 12p13.3-p12.2 ETV6 P (Poor) 1 [52]
13 MPN Loss 13q RB1 Recurrent 1 [55]
14 MPN CN-LOH 14q CHGA Recurrent 3 [40, 55, 56[9]
17 MPN Loss 17p TP53 P (Poor) 1 [51, 52, 55]
20 MPN Loss 20q ASXL1 Recurrent 1 [40, 55, 114]
22 CML Loss 22q11.2 Recurrent 3 [50, 51]
22 CML Gain 22q11.2 (+Ph) BCR Recurrent 1 [51]
  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Starczynowski DT, Vercauteren S, Telenius A, Sung S, Tohyama K, Brooks-Wilson A, et al. High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 2008;112:3412-24.[1]
  2. Yeung CCS, McElhone S, Chen XY, Ng D, Storer BE, Deeg HJ, et al. Impact of copy neutral loss of heterozygosity and total genome aberrations on survival in myelodysplastic syndrome. Mod Pathol 2017.[2]
  3. 3.00 3.01 3.02 3.03 3.04 3.05 3.06 3.07 3.08 3.09 3.10 Arenillas L, Mallo M, Ramos F, Guinta K, Barragan E, Lumbreras E, et al. Single nucleotide polymorphism array karyotyping: a diagnostic and prognostic tool in myelodysplastic syndromes with unsuccessful conventional cytogenetic testing. Genes Chromosomes Cancer 2013;52:1167-77.[3]
  4. Cluzeau T, Moreilhon C, Mounier N, Karsenti JM, Gastaud L, Garnier G, et al. Total genomic alteration as measured by SNP-array-based molecular karyotyping is predictive of overall survival in a cohort of MDS or AML patients treated with azacitidine. Blood Cancer J 2013;3:e155.[4]
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 Ganster C, Shirneshan K, Salinas-Riester G, Braulke F, Schanz J, Platzbecker U, et al. Influence of total genomic alteration and chromosomal fragmentation on response to a combination of azacitidine and lenalidomide in a cohort of patients with very high risk MDS. Leuk Res 2015;39:1079-87.[5]
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 6.19 6.20 6.21 6.22 6.23 6.24 6.25 6.26 6.27 6.28 6.29 6.30 6.31 6.32 6.33 6.34 6.35 6.36 6.37 6.38 6.39 6.40 6.41 6.42 6.43 6.44 6.45 Tiu RV, Gondek LP, O'Keefe CL, Elson P, Huh J, Mohamedali A, et al. Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 2011;117:4552-60.[6]
  7. 7.0 7.1 7.2 7.3 7.4 Gondek LP, Haddad AS, O'Keefe CL, Tiu R, Wlodarski MW, Sekeres MA, et al. Detection of cryptic chromosomal lesions including acquired segmental uniparental disomy in advanced and low-risk myelodysplastic syndromes. Exp Hematol 2007;35:1728-38.[7]
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 Dunbar AJ, Gondek LP, O'Keefe CL, Makishima H, Rataul MS, Szpurka H, et al. 250K single nucleotide polymorphism array karyotyping identifies acquired uniparental disomy and homozygous mutations, including novel missense substitutions of c-Cbl, in myeloid malignancies. Cancer Res 2008;68:10349-57.[8]
  9. 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 9.11 9.12 9.13 Sugimoto Y, Sekeres MA, Makishima H, Traina F, Visconte V, Jankowska A, et al. Cytogenetic and molecular predictors of response in patients with myeloid malignancies without del[5q] treated with lenalidomide. J Hematol Oncol 2012;5:4.[9]
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 10.12 10.13 Xu X, Johnson EB, Leverton L, Arthur A, Watson Q, Chang FL, et al. The advantage of using SNP array in clinical testing for hematological malignancies--a comparative study of three genetic testing methods. Cancer Genet 2013;206:317-26.[10]
  11. 11.00 11.01 11.02 11.03 11.04 11.05 11.06 11.07 11.08 11.09 11.10 11.11 11.12 11.13 11.14 11.15 Evans AG, Ahmad A, Burack WR, Iqbal MA. Combined comparative genomic hybridization and single-nucleotide polymorphism array detects cryptic chromosomal lesions in both myelodysplastic syndromes and cytopenias of undetermined significance. Mod Pathol 2016;29:1183-99.[11]
  12. 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 12.10 12.11 12.12 12.13 12.14 12.15 12.16 12.17 12.18 Hu Q, Chu Y, Song Q, Yao Y, Yang W, Huang S. The prevalence of chromosomal aberrations associated with myelodysplastic syndromes in China. Ann Hematol 2016;95:1241-8.[12]
  13. 13.0 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Jankowska AM, Szpurka H, Tiu RV, Makishima H, Afable M, Huh J, et al. Loss of heterozygosity 4q24 and TET2 mutations associated with myelodysplastic/myeloproliferative neoplasms. Blood 2009;113:6403-10.[13]
  14. 14.0 14.1 14.2 14.3 Bacher U, Weissmann S, Kohlmann A, Schindela S, Alpermann T, Schnittger S, et al. TET2 deletions are a recurrent but rare phenomenon in myeloid malignancies and are frequently accompanied by TET2 mutations on the remaining allele. Br J Haematol 2012;156:67-75.[14]
  15. 15.00 15.01 15.02 15.03 15.04 15.05 15.06 15.07 15.08 15.09 15.10 15.11 Kolquist KA, Schultz RA, Furrow A, Brown TC, Han JY, Campbell LJ, et al. Microarray-based comparative genomic hybridization of cancer targets reveals novel, recurrent genetic aberrations in the myelodysplastic syndromes. Cancer Genet 2011;204:603-28.[15]
  16. 16.00 16.01 16.02 16.03 16.04 16.05 16.06 16.07 16.08 16.09 16.10 16.11 16.12 Gondek LP, Tiu R, O'Keefe CL, Sekeres MA, Theil KS, Maciejewski JP. Chromosomal lesions and uniparental disomy detected by SNP arrays in MDS, MDS/MPD, and MDS-derived AML. Blood 2008;111:1534-42.[16]
  17. 17.0 17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 Heinrichs S, Kulkarni RV, Bueso-Ramos CE, Levine RL, Loh ML, Li C, et al. Accurate detection of uniparental disomy and microdeletions by SNP array analysis in myelodysplastic syndromes with normal cytogenetics. Leukemia 2009;23:1605-13.[17]
  18. 18.0 18.1 Mohamedali AM, Smith AE, Gaken J, Lea NC, Mian SA, Westwood NB, et al. Novel TET2 mutations associated with UPD4q24 in myelodysplastic syndrome. J Clin Oncol 2009;27:4002-6.[18]
  19. 19.0 19.1 19.2 19.3 19.4 19.5 Mohamedali A, Gaken J, Twine NA, Ingram W, Westwood N, Lea NC, et al. Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 2007;110:3365-73.[19]
  20. 20.00 20.01 20.02 20.03 20.04 20.05 20.06 20.07 20.08 20.09 20.10 20.11 20.12 20.13 20.14 20.15 20.16 Flach J, Dicker F, Schnittger S, Schindela S, Kohlmann A, Haferlach T, et al. An accumulation of cytogenetic and molecular genetic events characterizes the progression from MDS to secondary AML: an analysis of 38 paired samples analyzed by cytogenetics, molecular mutation analysis and SNP microarray profiling. Leukemia 2011;25:713-8.[20]
  21. 21.0 21.1 21.2 21.3 21.4 Larsson N, Lilljebjorn H, Lassen C, Johansson B, Fioretos T. Myeloid malignancies with acquired trisomy 21 as the sole cytogenetic change are clinically highly variable and display a heterogeneous pattern of copy number alterations and mutations. Eur J Haematol 2012;88:136-43.[21]
  22. 22.0 22.1 22.2 22.3 22.4 22.5 22.6 22.7 22.8 Huh J, Jung CW, Kim HJ, Kim YK, Moon JH, Sohn SK, et al. Different characteristics identified by single nucleotide polymorphism array analysis in leukemia suggest the need for different application strategies depending on disease category. Genes Chromosomes Cancer 2013;52:44-55.[22]
  23. 23.0 23.1 23.2 23.3 Jerez A, Gondek LP, Jankowska AM, Makishima H, Przychodzen B, Tiu RV, et al. Topography, clinical, and genomic correlates of 5q myeloid malignancies revisited. J Clin Oncol 2012;30:1343-9.[23]
  24. 24.0 24.1 24.2 24.3 24.4 Stengel A, Kern W, Haferlach T, Meggendorfer M, Haferlach C. The 5q deletion size in myeloid malignancies is correlated to additional chromosomal aberrations and to TP53 mutations. Genes Chromosomes Cancer 2016;55:777-85. [24]
  25. 25.0 25.1 25.2 25.3 25.4 25.5 25.6 Kunze K, Gamerdinger U, Lessig-Owlanj J, Sorokina M, Brobeil A, Tur MK, et al. Detection of an activated JAK3 variant and a Xq26.3 microdeletion causing loss of PHF6 and miR-424 expression in myelodysplastic syndromes by combined targeted next generation sequencing and SNP array analysis. Pathol Res Pract 2014;210:369-76.[25]
  26. 26.0 26.1 26.2 26.3 26.4 26.5 Thiel A, Beier M, Ingenhag D, Servan K, Hein M, Moeller V, et al. Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia 2011;25:387-99.[26]
  27. 27.0 27.1 27.2 27.3 27.4 27.5 27.6 27.7 Volkert S, Haferlach T, Holzwarth J, Zenger M, Kern W, Staller M, et al. Array CGH identifies copy number changes in 11% of 520 MDS patients with normal karyotype and uncovers prognostically relevant deletions. Leukemia 2016;30:257-60.[27]
  28. 28.0 28.1 28.2 28.3 28.4 28.5 Svobodova K, Zemanova Z, Lhotska H, Novakova M, Podskalska L, Belickova M, et al. Copy number neutral loss of heterozygosity at 17p and homozygous mutations of TP53 are associated with complex chromosomal aberrations in patients newly diagnosed with myelodysplastic syndromes. Leuk Res 2016;42:7-12.[28]
  29. 29.0 29.1 29.2 29.3 29.4 Babushok DV, Xie HM, Roth JJ, Perdigones N, Olson TS, Cockroft JD, et al. Single nucleotide polymorphism array analysis of bone marrow failure patients reveals characteristic patterns of genetic changes. Br J Haematol 2014;164:73-82.[29]
  30. 30.0 30.1 30.2 30.3 30.4 30.5 30.6 30.7 30.8 30.9 Stevens-Kroef MJ, Hebeda KM, Verwiel ET, Kamping EJ, van Cleef PH, Kuiper RP, et al. Microarray-based genomic profiling and in situ hybridization on fibrotic bone marrow biopsies for the identification of numerical chromosomal abnormalities in myelodysplastic syndrome. Mol Cytogenet 2015;8:33.[30]
  31. 31.0 31.1 31.2 31.3 31.4 Barresi V, Palumbo GA, Musso N, Consoli C, Capizzi C, Meli CR, et al. Clonal selection of 11q CN-LOH and CBL gene mutation in a serially studied patient during MDS progression to AML. Leuk Res 2010;34:1539-42.[31]