Changes

16,265 bytes added ,  02:19, 2 August 2018
Line 162: Line 162:  
==References==
 
==References==
   −
=== EXAMPLE Book ===
+
1. Jennings, G. T. et al. Cytosolic NADP (+)-dependent isocitrate dehydrogenase. Isolation of rat cDNA and study of tissue-specific and developmental expression of mRNA. J. Biol. Chem. 269, 23128–23134 (1994). PMID: 8083215
#Arber DA, et al., (2008). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, Editors. IARC Press: Lyon, France, p117-118.
     −
=== EXAMPLE Journal Article ===
+
2. Yoshihara, T. et al. Localization of Cytosolic NADP-dependent Isocitrate Dehydrogenase in the Peroxisomes of Rat Liver Cells: Biochemical and Immunocytochemical Studies. J. Histochem. Cytochem. 49, 1123–1131 (2001). PMID: 11511681
#Li Y, et al., (2001). Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 28:220-221, PMID 11431691.
+
 
 +
3. Xu, X. et al. Structures of Human Cytosolic NADP-dependent Isocitrate Dehydrogenase Reveal a Novel Self-regulatory Mechanism of Activity. J. Biol. Chem. 279, 33946–33957 (2004). PMID: 15173171
 +
 
 +
4. Zhao, S. et al. Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1α. Science 324, 261–265 (2009). PMID: 19359588
 +
 
 +
5. Khurshed, M., Molenaar, R. J., Lenting, K., Leenders, W. P. & van Noorden, C. J. F. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma. Oncotarget 8, (2017). PMID: 28467784
 +
 
 +
6. Bleeker, F. E. et al. The prognostic IDH1 R132 mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol. (Berl.) 119, 487–494 (2010). PMID: 20127344
 +
 
 +
7. Minard, K. I. & McAlister-Henn, L. Dependence of peroxisomal β-oxidation on cytosolic sources of NADPH. J. Biol. Chem. 274, 3402–3406 (1999). PMID: 9920883
 +
 
 +
8. Mailloux, R. J. et al. The Tricarboxylic Acid Cycle, an Ancient Metabolic Network with a Novel Twist. PLoS ONE 2, e690 (2007). PMID: 17668068
 +
 
 +
9. Lee, S. M. et al. Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic. Biol. Med. 32, 1185–1196 (2002). PMID: 12031902
 +
 
 +
10. Yang, E. S., Lee, S.-M. & Park, J.-W. Silencing of cytosolic NADP+-dependent isocitrate dehydrogenase gene enhances ethanol-induced toxicity in HepG2 cells. Arch. Pharm. Res. 33, 1065–1071 (2010). PMID: 20661717
 +
 
 +
11. Lee, S. ‐H. et al. Role of NADP + ‐dependent isocitrate dehydrogenase (NADP + ‐ICDH) on cellular defence against oxidative injury by γ ‐rays. Int. J. Radiat. Biol. 80, 635–642 (2004). PMID: 15586883
 +
 
 +
12. Jo, S.-H. et al. Cellular defense against UVB-induced phototoxicity by cytosolic NADP+-dependent isocitrate dehydrogenase. Biochem. Biophys. Res. Commun. 292, 542–549 (2002). PMID: 11906195
 +
 
 +
13. Lee, S. M., Huh, T.-L. & Park, J.-W. Inactivation of NADP+-dependent isocitrate dehydrogenase by reactive oxygen species. Biochimie 83, 1057–1065 (2001). PMID: 11879734
 +
 
 +
14. Batinic-Haberle, I. & Benov, L. T. An SOD mimic protects NADP + -dependent isocitrate dehydrogenase against oxidative inactivation. Free Radic. Res. 42, 618–624 (2008). PMID: 18608518
 +
 
 +
15. Shechter, I., Dai, P., Huo, L. & Guan, G. IDH1 gene transcription is sterol regulated and activated by SREBP-1a and SREBP-2 in human hepatoma HepG2 cells: evidence that IDH1 may regulate lipogenesis in hepatic cells. J. Lipid Res. 44, 2169–2180 (2003). PMID: 12923220
 +
 
 +
16. Joseph, J. W. et al. The Mitochondrial Citrate/Isocitrate Carrier Plays a Regulatory Role in Glucose-stimulated Insulin Secretion. J. Biol. Chem. 281, 35624–35632 (2006). PMID: 17001083
 +
 
 +
17. Koh, H.-J. et al. Cytosolic NADP + -dependent Isocitrate Dehydrogenase Plays a Key Role in Lipid Metabolism. J. Biol. Chem. 279, 39968–39974 (2004). PMID: 15254034
 +
 
 +
18. Ronnebaum, S. M. et al. A Pyruvate Cycling Pathway Involving Cytosolic NADP-dependent Isocitrate Dehydrogenase Regulates Glucose-stimulated Insulin Secretion. J. Biol. Chem. 281, 30593–30602 (2006). PMID: 16912049
 +
 
 +
19. Reitman, Z. J. & Yan, H. Isocitrate Dehydrogenase 1 and 2 Mutations in Cancer: Alterations at a Crossroads of Cellular Metabolism. JNCI J. Natl. Cancer Inst. 102, 932–941 (2010). PMID: 20513808
 +
 
 +
20. Yan, H. et al. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360, 765–773 (2009). PMID: 23532369
 +
 
 +
21. Sanson, M. et al. Isocitrate Dehydrogenase 1 Codon 132 Mutation Is an Important Prognostic Biomarker in Gliomas. J. Clin. Oncol. 27, 4150–4154 (2009). PMID: 19636000
 +
 
 +
22. Nobusawa, S., Watanabe, T., Kleihues, P. & Ohgaki, H. IDH1 Mutations as Molecular Signature and Predictive Factor of Secondary Glioblastomas. Clin. Cancer Res. 15, 6002–6007 (2009). PMID: 19755387
 +
 
 +
23. Lugowska, I. et al. IDH1/2 Mutations Predict Shorter Survival in Chondrosarcoma. J. Cancer 9, 998–1005 (2018). PMID: 29581779
 +
 
 +
24. Amary, M. F. et al. IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J. Pathol. 224, 334–343 (2011). PMID: 21598255
 +
 
 +
25. Pansuriya, T. C. et al. Somatic mosaic IDH1 and IDH2 mutations are associated with enchondroma and spindle cell hemangioma in Ollier disease and Maffucci syndrome. Nat. Genet. 43, 1256–1261 (2011). PMID: 22057234
 +
 
 +
26. Wang, P. et al. Mutations in isocitrate dehydrogenase 1 and 2 occur frequently in intrahepatic cholangiocarcinomas and share hypermethylation targets with glioblastomas. Oncogene 32, 3091–3100 (2013). PMID: 22824796
 +
 
 +
27. Borger, D. R. et al. Frequent Mutation of Isocitrate Dehydrogenase (IDH)1 and IDH2 in Cholangiocarcinoma Identified Through Broad-Based Tumor Genotyping. The Oncologist 17, 72–79 (2012). PMID: 22180306
 +
 
 +
28. Churi, C. R. et al. Mutation Profiling in Cholangiocarcinoma: Prognostic and Therapeutic Implications. PLOS ONE 9, e115383 (2014). PMID: 25536104
 +
 
 +
29. Goyal, L. et al. Prognosis and Clinicopathologic Features of Patients With Advanced Stage Isocitrate Dehydrogenase (IDH) Mutant and IDH Wild-Type Intrahepatic Cholangiocarcinoma. The Oncologist 20, 1019–1027 (2015). PMID: 26245674
 +
 
 +
30. Jiao, Y. et al. Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat. Genet. 45, 1470–1473 (2013). PMID: 24185509
 +
 
 +
31. Mardis, E. R. et al. Recurring Mutations Found by Sequencing an Acute Myeloid Leukemia Genome. N. Engl. J. Med. 361, 1058–1066 (2009). PMID: 19657110
 +
 
 +
32. Xu, Q. et al. Correlation Between Isocitrate Dehydrogenase Gene Aberrations and Prognosis of Patients with Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis. Clin. Cancer Res. 23, 4511–4522 (2017). PMID: 28246275
 +
 
 +
33. Schnittger, S. et al. IDH1 mutations are detected in 6.6% of 1414 AML patients and are associated with intermediate risk karyotype and unfavorable prognosis in adults younger than 60 years and unmutated NPM1 status. Blood 116, 5486–5496 (2010). PMID: 20805365
 +
 
 +
34. Patnaik, M. M. et al. Differential prognostic effect of IDH1 versus IDH2 mutations in myelodysplastic syndromes: a Mayo Clinic Study of 277 patients. Leukemia 26, 101–105 (2012). PMID: 22033490
 +
 
 +
35. Schumacher, T. et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 512, 324 (2014). PMID: 25043048
 +
 
 +
36. Farshidfar, F. et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 18, 2780–2794 (2017). PMID: 28658632
 +
 
 +
37. Papaemmanuil, E. et al. Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209–2221 (2016). PMID: 27276561
 +
 
 +
38. Molenaar, R. J. et al. Clinical and biological implications of ancestral and non-ancestral IDH1 and IDH2 mutations in myeloid neoplasms. Leukemia 29, 2134 (2015). PMID: 25836588
 +
 
 +
39. Dang, L. et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462, 739–744 (2009). PMID: 19935646
 +
 
 +
40. Molenaar, R. J., Maciejewski, J. P., Wilmink, J. W. & van Noorden, C. J. F. Wild-type and mutated IDH1/2 enzymes and therapy responses. Oncogene 37, 1949–1960 (2018). PMID: 29367755
 +
 
 +
41. Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899 (2004). PMID: 15516961
 +
 
 +
42. Frezza, C., Tennant, D. A. & Gottlieb, E. IDH1 Mutations in Gliomas: When an Enzyme Loses Its Grip. Cancer Cell 17, 7–9 (2010). PMID: 20129244
 +
 
 +
43. Chan, S. M. et al. Isocitrate dehydrogenase 1 and 2 mutations induce BCL-2 dependence in acute myeloid leukemia. Nat. Med. 21, 178–184 (2015). PMID: 25599133
 +
 
 +
44. Karpel-Massler, G. et al. Induction of synthetic lethality in IDH1-mutated gliomas through inhibition of Bcl-xL. Nat. Commun. 8, (2017). PMID: 29057925
 +
 
 +
45. Tateishi, K. et al. Extreme Vulnerability of IDH1 Mutant Cancers to NAD+ Depletion. Cancer Cell 28, 773–784 (2015). PMID: 26678339
 +
 
 +
46. Chen, F. et al. Oncometabolites D - and L -2-Hydroxyglutarate Inhibit the AlkB Family DNA Repair Enzymes under Physiological Conditions. Chem. Res. Toxicol. 30, 1102–1110 (2017). PMID: 28269980
 +
 
 +
47. Sulkowski, P. L. et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci. Transl. Med. 9, eaal2463 (2017). PMID: 28148839
 +
 
 +
48. Inoue, S. et al. Mutant IDH1 Downregulates ATM and Alters DNA Repair and Sensitivity to DNA Damage Independent of TET2. Cancer Cell 30, 337–348 (2016). PMID: 27424808
 +
 
 +
49. Noushmehr, H. et al. Identification of a CpG Island Methylator Phenotype that Defines a Distinct Subgroup of Glioma. Cancer Cell 17, 510–522 (2010). PMID: 20399149
 +
 
 +
50. Figueroa, M. E. et al. Leukemic IDH1 and IDH2 Mutations Result in a Hypermethylation Phenotype, Disrupt TET2 Function, and Impair Hematopoietic Differentiation. Cancer Cell 18, 553–567 (2010). PMID: 21130701
 +
 
 +
51. Turcan, S. et al. IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype. Nature 483, 479–483 (2012). PMID: 22343889
 +
 
 +
52. Losman, J.-A. & Kaelin, W. G. What a difference a hydroxyl makes: mutant IDH, (R)-2-hydroxyglutarate, and cancer. Genes Dev. 27, 836–852 (2013). PMID: 23630074
 +
 
 +
53. Tönjes, M. et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 19, 901–908 (2013). PMID: 23793099
 +
 
 +
54. Molenaar, R. J. et al. Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198. Cancer Res. 75, 4790–4802 (2015). PMID: 26363012
 +
 
 +
55. Shi, J. et al. Decreasing GSH and increasing ROS in chemosensitivity gliomas with IDH1 mutation. Tumor Biol. 36, 655–662 (2015). PMID: 25283382
 +
 
 +
56. Molenaar, R. J., Radivoyevitch, T., Maciejewski, J. P., van Noorden, C. J. & Bleeker, F. E. The driver and passenger effects of isocitrate dehydrogenase 1 and 2 mutations in oncogenesis and survival prolongation. Biochim. Biophys. Acta BBA-Rev. Cancer 1846, 326–341 (2014). PMID: 24880135
 +
 
 +
57. Gilbert, M. R. et al. Autophagy and oxidative stress in gliomas with IDH1 mutations. Acta Neuropathol. (Berl.) 127, 221–233 (2014). PMID: 24150401
 +
 
 +
58. Ohgaki, H. & Kleihues, P. Genetic alterations and signaling pathways in the evolution of gliomas. Cancer Sci. 100, 2235–2241 (2009). PMID: 19737147
 +
 
 +
59. Watanabe, T., Nobusawa, S., Kleihues, P. & Ohgaki, H. IDH1 Mutations Are Early Events in the Development of Astrocytomas and Oligodendrogliomas. Am. J. Pathol. 174, 1149–1153 (2009). PMID: 19246647
 +
 
 +
60. Watanabe, T., Vital, A., Nobusawa, S., Kleihues, P. & Ohgaki, H. Selective acquisition of IDH1 R132C mutations in astrocytomas associated with Li-Fraumeni syndrome. Acta Neuropathol. (Berl.) 117, 653–656 (2009). PMID: 19340432
 +
 
 +
61. The Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 372, 2481–2498 (2015). PMID: 26061751
 +
 
 +
62. Chou, W.-C. et al. The prognostic impact and stability of Isocitrate dehydrogenase 2 mutation in adult patients with acute myeloid leukemia. Leukemia 25, 246–253 (2011). PMID: 21079611
 +
 
 +
63. Marcucci, G. et al. IDH1 and IDH2 Gene Mutations Identify Novel Molecular Subsets Within De Novo Cytogenetically Normal Acute Myeloid Leukemia: A Cancer and Leukemia Group B Study. J. Clin. Oncol. 28, 2348–2355 (2010). PMID: 20368543
 +
 
 +
64. Feng, J.-H. et al. Prognostic significance of IDH1 mutations in acute myeloid leukemia: a meta-analysis. Am. J. Blood Res. 2, 254 (2012). PMID: 23226625
 +
 
 +
65. Cuyàs, E. et al. Oncometabolic mutation IDH1 R132H confers a metformin-hypersensitive phenotype. Oncotarget 6, (2015). PMID: 25980580
 +
 
 +
66. Molenaar, R. J. et al. Study protocol of a phase IB/II clinical trial of metformin and chloroquine in patients with IDH1 -mutated or IDH2 -mutated solid tumours. BMJ Open 7, e014961 (2017). PMID: 28601826
 +
 
 +
67. Seltzer, M. J. et al. Inhibition of Glutaminase Preferentially Slows Growth of Glioma Cells with Mutant IDH1. Cancer Res. 70, 8981–8987 (2010). PMID: 21045145
 +
 
 +
68. Elhammali, A. et al. A High-Throughput Fluorimetric Assay for 2-Hydroxyglutarate Identifies Zaprinast as a Glutaminase Inhibitor. Cancer Discov. 4, 828–839 (2014). PMID: 24740997
 +
 
 +
69. Emadi, A. et al. Inhibition of glutaminase selectively suppresses the growth of primary acute myeloid leukemia cells with IDH mutations. Exp. Hematol. 42, 247–251 (2014). PMID: 24333121
 +
 
 +
70. Mohrenz, I. V. et al. Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death. Apoptosis 18, 1416–1425 (2013). PMID: 23801081
 +
 
 +
71. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2012). PMID: 22101433
 +
 
 +
72. Calvert, A. E. et al. Cancer-Associated IDH1 Promotes Growth and Resistance to Targeted Therapies in the Absence of Mutation. Cell Rep. 19, 1858–1873 (2017). PMID: 28564604
 +
 
 +
73. Konopleva, M. et al. Efficacy and Biological Correlates of Response in a Phase II Study of Venetoclax Monotherapy in Patients with Acute Myelogenous Leukemia. Cancer Discov. 6, 1106–1117 (2016). PMID: 27520294
 +
 
 +
74. Saha, S. K. et al. Isocitrate Dehydrogenase Mutations Confer Dasatinib Hypersensitivity and SRC Dependence in Intrahepatic Cholangiocarcinoma. Cancer Discov. 6, 727–739 (2016). PMID: 27231123
 +
 
 +
75. Boutzen, H. et al. Isocitrate dehydrogenase 1 mutations prime the all-trans retinoic acid myeloid differentiation pathway in acute myeloid leukemia. J. Exp. Med. 213, 483–497 (2016). PMID: 26951332
 +
 
 +
76. Zarei, M. et al. Posttranscriptional Upregulation of IDH1 by HuR Establishes a Powerful Survival Phenotype in Pancreatic Cancer Cells. Cancer Res. 77, 4460–4471 (2017). PMID: 28652247
 +
 
 +
77. Kim, S. Y., Yoo, Y. H. & Park, J.-W. Silencing of mitochondrial NADP+-dependent isocitrate dehydrogenase gene enhances glioma radiosensitivity. Biochem. Biophys. Res. Commun. 433, 260–265 (2013). PMID: 23500467
 +
 
 +
78. Wang, J.-B., Dong, D.-F., Wang, M.-D. & Gao, K. IDH1 Overexpression Induced Chemotherapy Resistance and IDH1 Mutation Enhanced Chemotherapy Sensitivity in Glioma Cells in Vitro and in Vivo. Asian Pac. J. Cancer Prev. 15, 427–432 (2014). PMID: 24528069
 +
 
 +
79. Wang, P. et al. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents. Cell Rep. 13, 2353–2361 (2015). PMID: 26686626
 +
 
 +
80. Buckner, J. C. et al. Radiation plus Procarbazine, CCNU, and Vincristine in Low-Grade Glioma. N. Engl. J. Med. 374, 1344–1355 (2016). PMID: 27050206
 +
 
 +
81. SongTao, Q. et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 103, 269–273 (2012). PMID: 22034964
 +
 
 +
82. Molenaar, R. J. et al. IDH1/2 Mutations Sensitize Acute Myeloid Leukemia to PARP Inhibition and This Is Reversed by IDH1/2-Mutant Inhibitors. Clin. Cancer Res. 24, 1705–1715 (2018). PMID: 29339439
 +
 
 +
83. Lu, Y. et al. Chemosensitivity of IDH1-Mutated Gliomas Due to an Impairment in PARP1-Mediated DNA Repair. Cancer Res. 77, 1709–1718 (2017). PMID: 28202508
 +
 
 +
84. Popovici-Muller, J. et al. Discovery of the first potent inhibitors of mutant IDH1 that lower tumor 2-HG in vivo. ACS Med. Chem. Lett. 3, 850–855 (2012). PMID: 24900389
 +
 
 +
85. Popovici-Muller, J. et al. Discovery of AG-120 (Ivosidenib): A First-in-Class Mutant IDH1 Inhibitor for the Treatment of IDH1 Mutant Cancers. ACS Med. Chem. Lett. 9, 300–305 (2018). PMID: 29670690
 +
 
 +
86. Rohle, D. et al. An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells. Science 340, 626–630 (2013). PMID: 23558169
 +
 
 +
87. Li, L. et al. Treatment with a Small Molecule Mutant IDH1 Inhibitor Suppresses Tumorigenic Activity and Decreases Production of the Oncometabolite 2-Hydroxyglutarate in Human Chondrosarcoma Cells. PLOS ONE 10, e0133813 (2015). PMID: 26368816
 +
 
 +
88. Birendra, K. C. & DiNardo, C. D. Evidence for Clinical Differentiation and Differentiation Syndrome in Patients With Acute Myeloid Leukemia and IDH1 Mutations Treated With the Targeted Mutant IDH1 Inhibitor, AG-120. Clin. Lymphoma Myeloma Leuk. 16, 460–465 (2016). PMID: 27245312
    
== Notes ==
 
== Notes ==
62

edits