Changes

no edit summary
Line 140: Line 140:  
The example of RUNX1 is shown below.
 
The example of RUNX1 is shown below.
   −
*'''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_and_Related_Precursor_Neoplasms Acute Myeloid Leukemia (AML) and Related Precursor Neoplasms]'''
+
*'''[http://www.ccga.io/index.php/HAEM4:Acute_Myeloid_Leukemia_(AML)_and_Related_Precursor_Neoplasms Acute Myeloid Leukemia (AML) and Related Precursor Neoplasms]'''
   −
--- '''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_with_t(8;21)(q22;q22.1);_RUNX1-RUNX1T1 Acute Myeloid Leukemia (AML) with t(8;21)(q22;q22.1); RUNX1-RUNX1T1]'''
+
--- '''[http://www.ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia_with_RUNX1::RUNX1T1_fusion Acute Myeloid Leukemia (AML) with t(8;21)(q22;q22.1); RUNX1-RUNX1T1]'''
   −
--- '''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_with_Mutated_RUNX1 Acute Myeloid Leukemia (AML) with Mutated RUNX1]'''
+
--- '''[http://www.ccga.io/index.php/HAEM4:Acute_Myeloid_Leukemia_(AML)_with_Mutated_RUNX1 Acute Myeloid Leukemia (AML) with Mutated RUNX1]'''
    
The frequency of ''RUNX1'' mutations is between 5-18% of all AML patients tested [3]. The most common chromosomal translocation is t(8;21)(q22;q22)resulting in RUNX1-RUNX1T1 fusion in ''de novo'' AML, at approximately 7% [2,6].  This translocation confers a favorable prognosis in AML and other neoplasms [2,5,6].  Another ''RUNX1'' alteration is the t(3;21)(q26;q22), in which the RUNT domain of ''RUNX1'' is fused to the entire ''EVI1'' gene.  This translocation is rarely found in patients diagnosed with ''de novo'' AML and is more common in those with therapy-related myelodysplastic syndrome (MDS)/AML [9].  Other mutations in ''RUNX1'' include deletions, missense, splicing, frameshift, and nonsense alterations (mostly loss-of-function or decreased function), and occur at a frequency of approximately 10% in AML patients [6]. These mutations are mechanistically distinct from the chromosomal translocations and confer a worse prognosis [2,5,6].
 
The frequency of ''RUNX1'' mutations is between 5-18% of all AML patients tested [3]. The most common chromosomal translocation is t(8;21)(q22;q22)resulting in RUNX1-RUNX1T1 fusion in ''de novo'' AML, at approximately 7% [2,6].  This translocation confers a favorable prognosis in AML and other neoplasms [2,5,6].  Another ''RUNX1'' alteration is the t(3;21)(q26;q22), in which the RUNT domain of ''RUNX1'' is fused to the entire ''EVI1'' gene.  This translocation is rarely found in patients diagnosed with ''de novo'' AML and is more common in those with therapy-related myelodysplastic syndrome (MDS)/AML [9].  Other mutations in ''RUNX1'' include deletions, missense, splicing, frameshift, and nonsense alterations (mostly loss-of-function or decreased function), and occur at a frequency of approximately 10% in AML patients [6]. These mutations are mechanistically distinct from the chromosomal translocations and confer a worse prognosis [2,5,6].
Line 232: Line 232:  
'''[http://www.ccga.io/index.php/Acute_lymphoblastic_leukaemia_(ALL) Acute Lymphoblastic Leukemia]'''
 
'''[http://www.ccga.io/index.php/Acute_lymphoblastic_leukaemia_(ALL) Acute Lymphoblastic Leukemia]'''
   −
'''[http://www.ccga.io/index.php/Acute_Myeloid_Leukemia_(AML)_with_BCR-ABL1 Acute Myeloid Leukemia (AML) with BCR-ABL1]'''
+
'''[http://www.ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia_with_BCR::ABL1_fusion Acute Myeloid Leukemia (AML) with BCR-ABL1]'''
   −
'''[http://www.ccga.io/index.php/Mixed_Phenotype_Acute_Leukemia_(MPAL)_with_t(9;22)(q34.1;q11.2);_BCR-ABL1 Mixed Phenotype Acute Leukemia (MPAL) with t(9;22)(q34.1;q11.2); BCR-ABL1]'''
+
'''[http://www.ccga.io/index.php/HAEM5:Mixed-phenotype_acute_leukaemia_with_BCR::ABL1_fusion Mixed Phenotype Acute Leukemia (MPAL) with t(9;22)(q34.1;q11.2); BCR-ABL1]'''
    
See the '''[http://www.ccga.io/index.php/BCR "BCR gene"]''' for additional details of the BCR-ABL1 gene fusion.
 
See the '''[http://www.ccga.io/index.php/BCR "BCR gene"]''' for additional details of the BCR-ABL1 gene fusion.