Difference between revisions of "CNS5:Diffuse paediatric-type high-grade glioma, H3-wildtype and IDH-wildtype"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
Line 1: Line 1:
{{Under Construction}}
+
MGMT{{Under Construction}}
 
==Primary Author(s)*==
 
==Primary Author(s)*==
  
Line 60: Line 60:
 
|-
 
|-
 
|Negative (universal)|| IDH1 R132H (normal retained pattern of staining).
 
|Negative (universal)|| IDH1 R132H (normal retained pattern of staining).
H3 p.K28me3 (K27me4) (preserved expression).<ref name=":3" />  
+
H3 p.K28me3 (K27me4) (preserved expression).<ref name=":3" />
 
|-
 
|-
 
|Negative (subset)||dpHGG MYCN molecular subtype can be negative for glial marker GFAP, and/or OLIG2.
 
|Negative (subset)||dpHGG MYCN molecular subtype can be negative for glial marker GFAP, and/or OLIG2.
Line 66: Line 66:
  
 
==Chromosomal Rearrangements (Gene Fusions)==
 
==Chromosomal Rearrangements (Gene Fusions)==
 
+
Fusions listed in the table below were identified in a single study, thus, frequencies in dpHGG H3/IGH-wt should be interpreted with caution.<ref name=":4">{{Cite journal|last=Deng|first=Maximilian Y.|last2=Sturm|first2=Dominik|last3=Pfaff|first3=Elke|last4=Sill|first4=Martin|last5=Stichel|first5=Damian|last6=Balasubramanian|first6=Gnana Prakash|last7=Tippelt|first7=Stephan|last8=Kramm|first8=Christof|last9=Donson|first9=Andrew M.|date=2021-09-20|title=Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B|url=https://pubmed.ncbi.nlm.nih.gov/34545083|journal=Nature Communications|volume=12|issue=1|pages=5530|doi=10.1038/s41467-021-25708-y|issn=2041-1723|pmc=8452680|pmid=34545083}}</ref>
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence
+
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Structural  variation!!Prevalence
 
!Diagnostic Significance (Yes, No or Unknown)
 
!Diagnostic Significance (Yes, No or Unknown)
 
!Prognostic Significance (Yes, No or Unknown)
 
!Prognostic Significance (Yes, No or Unknown)
Line 75: Line 75:
 
!Notes
 
!Notes
 
|-
 
|-
|EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 20% (COSMIC)
+
|t(3;3)(p21.31;p25.2)
EXAMPLE 30% (add reference)
+
|FYCO1::RAF1
|Yes
+
|deletion
|No
+
|11%<ref name=":4" />
|Yes
+
|Unknown
|EXAMPLE
+
|Unknown
 
+
|Unknown
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
+
|Results in constitutive activation of kinase domain<ref name=":4" />
 +
|-
 +
|t(7;7)(q31.2;q31.32)||PTPRZ1::MET||deletion||22%<ref name=":4" />
 +
|Unknown
 +
|Unknown
 +
|Unknown
 +
|Concurrent MET amp is frequently noted<ref name=":4" />
 +
|-
 +
|t(7;7)(q31.2;q31.32)
 +
|CAPZA2::MET
 +
|deletion
 +
|11%<ref name=":4" />
 +
|Unknown
 +
|Unknown
 +
|Unknown
 +
|Concurrent MET amp is frequently noted<ref name=":4" />
 +
|-
 +
|t(9;9)(p31.32;p21.33)
 +
|GKAP1::NTRK2
 +
|deletion
 +
|11%<ref name=":4" />
 +
|Unknown
 +
|Unknown
 +
|Unknown
 +
|Results in constitutive dimerization of receptor<ref name=":4" />
 
|}
 
|}
 
 
 
==Individual Region Genomic Gain/Loss/LOH==
 
==Individual Region Genomic Gain/Loss/LOH==
 
Put your text here and fill in the table
 
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 97: Line 119:
 
!Notes
 
!Notes
 
|-
 
|-
|EXAMPLE
+
|2
 
+
|Amplification
7
+
|chr2:15,940,550-15,947,004 [hg38]
|EXAMPLE Loss
+
|2p24.3
|EXAMPLE
+
|Yes [50% dpHGG MYCN subtype]
 
+
|Yes, worst OS<ref name=":1" /><ref name=":2" />
chr7:1- 159,335,973 [hg38]
+
|No
|EXAMPLE
+
|MYCN amplification<ref name=":2" /><ref name=":5">{{Cite journal|last=Capper|first=David|last2=Jones|first2=David T. W.|last3=Sill|first3=Martin|last4=Hovestadt|first4=Volker|last5=Schrimpf|first5=Daniel|last6=Sturm|first6=Dominik|last7=Koelsche|first7=Christian|last8=Sahm|first8=Felix|last9=Chavez|first9=Lukas|date=2018-03-22|title=DNA methylation-based classification of central nervous system tumours|url=https://pubmed.ncbi.nlm.nih.gov/29539639|journal=Nature|volume=555|issue=7697|pages=469–474|doi=10.1038/nature26000|issn=1476-4687|pmc=6093218|pmid=29539639}}</ref>
 
+
|-
chr7
+
|2
|Yes
+
|Amplification
|Yes
+
|Unknown
 +
|2p25.1
 +
|No, but recurrent secondary finding [66% of dpHGG MYCN subtype]
 +
|Unknown
 +
|No
 +
|ID2 amplification is often (66%) co-amplified with MYCN<ref name=":2" /><ref name=":5" />
 +
|-
 +
|4
 +
|Amplification/Mutation
 +
|4:51819533-54425718 [GRCh38]
 +
|4q12
 +
|Yes [33% of dpHGG RTK1 subtype]
 +
|No<ref name=":2" />
 +
|No
 +
|PDGFRA alterations<ref name=":2" />
 +
|-
 +
|7
 +
|Amplification
 +
|chr7:55,019,017-55,211,628 [GRCh38]
 +
|7p11.2
 +
|Yes [50% of dpHGG RTK2 subtype]
 +
|No<ref name=":2" />
 
|No
 
|No
|EXAMPLE
+
|EGFR amplification<ref name=":2" />
 
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
 
 
|-
 
|-
|EXAMPLE
+
|8
 
+
|Amplification
8
+
|chr8:127,736,231-127,742,951 [GRCh38]
|EXAMPLE Gain
+
|8q24.21
|EXAMPLE
+
|No, but recurrent in dpHGG MYCN subtype [8%]
 
+
|Unknown
chr8:1-145,138,636 [hg38]
 
|EXAMPLE
 
 
 
chr8
 
 
|No
 
|No
 +
|MYC amplification
 +
|-
 +
|9
 +
|Homozygous loss
 +
|Variable
 +
|9p21.3
 
|No
 
|No
 +
|Yes
 
|No
 
|No
|EXAMPLE
+
|Deletions result in bi-allelic loss of CDKN2A/B: seen in 6% MYCN subtype, 27% RTK1 subtype; 72% RTK2 subtype.<ref name=":2" /><ref name=":4" />
 
 
Common recurrent secondary finding for t(8;21) (add reference).
 
 
|}
 
|}
 
==Characteristic Chromosomal Patterns==
 
==Characteristic Chromosomal Patterns==
 
Put your text here
 
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 143: Line 183:
 
!Notes
 
!Notes
 
|-
 
|-
|EXAMPLE
+
|Gain of chromosome 7 and loss of chromosome 10
 
+
|No
Co-deletion of 1p and 18q
 
 
|Yes
 
|Yes
 
|No
 
|No
|No
+
|Recurrent finding in 42~47% MYCN subtype; 12% RTK1 subtype; 28~50% RTK2 subtype.<ref name=":2" />
|EXAMPLE:
 
 
 
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
 
 
|}
 
|}
 
==Gene Mutations (SNV/INDEL)==
 
==Gene Mutations (SNV/INDEL)==
 
Put your text here and fill in the table
 
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 165: Line 199:
 
!Notes
 
!Notes
 
|-
 
|-
|EXAMPLE: TP53; Variable LOF mutations
+
|MGMT promoter
 
+
|Enzyme, a DNA-repair protein
EXAMPLE:
+
|18% RTK1 subtype and rare in MYCN and RTK2 subtypes.
 
+
|unclear
EGFR; Exon 20 mutations
+
|IDH1/2, H3
 
+
|Unknown
EXAMPLE: BRAF; Activating mutations
+
|Unknown
|EXAMPLE: TSG
+
|Yes
|EXAMPLE: 20% (COSMIC)
+
|11% of <ref name=":2" /><br />
 
+
|-
EXAMPLE: 30% (add Reference)
+
|PDGFRA
|EXAMPLE: IDH1 R123H
+
|Receptor
|EXAMPLE: EGFR amplification
+
|
 +
|unclear
 +
|IDH1/2, H3<br />
 +
|Unknown
 +
|Unknown
 +
|No
 
|
 
|
 +
|-
 +
|TERT promoter
 +
|Enzyme/ acts as TCG
 +
|26% MYCN subtype; 64% RTK2 subtype<ref name=":2" />
 +
|unclear
 +
|IDH1/2, H3
 +
|Unknown
 +
|Unknown
 +
|No
 
|
 
|
 +
|-
 +
|TP53
 +
|TSG
 +
|67% MYCN subtype; 48% RTK1 subtype; 50% RTK2 subtype<ref name=":2" /><ref name=":4" />
 +
|unclear
 +
|IDH1/2, H3
 +
|Unknown
 +
|Unknown
 +
|No
 
|
 
|
|EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).
 
<br />
 
 
|}
 
|}
 
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
 
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
Line 188: Line 243:
 
==Epigenomic Alterations==
 
==Epigenomic Alterations==
  
Put your text here
+
Methylation profiling can be used in the diagnosis of this tumor entity and can help to differentiate between three molecular profiles, pHGG RTK1, pHGG RTK2, and pHGG MYCN. Methylation of MGMT has been noted in 11% of pHGG MYCN cases and 18% of RTK1 cases.<ref name=":2" />
  
 
==Genes and Main Pathways Involved==
 
==Genes and Main Pathways Involved==
  
Put your text here and fill in the table
+
The pHGG, H3/IDH-wildtype frequently reveals variants in genes encoding members of the TAS/MAPK and PI3K pathways.
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
|-
 
|-
|EXAMPLE: BRAF and MAP2K1; Activating mutations
+
|MET; activating alterations
|EXAMPLE: MAPK signaling
+
|MAPK/ERK pathway activation
|EXAMPLE: Increased cell growth and proliferation
+
|Increased cell growth and proliferation
 
|-
 
|-
|EXAMPLE: CDKN2A; Inactivating mutations
+
|RAF1; activating alterations
|EXAMPLE: Cell cycle regulation
+
|MAPK/ERK pathway activation
|EXAMPLE: Unregulated cell division
+
|Increased cell growth and proliferation
 
|-
 
|-
|EXAMPLE:  KMT2C and ARID1A; Inactivating mutations
+
|NTRK2; activating alterations
|EXAMPLE:  Histone modification, chromatin remodeling
+
|MAPK/ERK pathway activation
|EXAMPLE:  Abnormal gene expression program
+
|Increased cell growth and proliferation
 
|}
 
|}
 
==Genetic Diagnostic Testing Methods==
 
==Genetic Diagnostic Testing Methods==
  
Put your text here
+
* ·Chromosome microarray  
 +
* ·Next generation sequencing  
 +
* ·DNA methylation profiling
  
 
==Familial Forms==
 
==Familial Forms==
  
Put your text here
+
Germline mutations of genes involved in the mismatch repair (MMR) system can be associated with a proportion of pHGG cases,<ref>{{Cite journal|last=Dodgshun|first=Andrew J.|last2=Fukuoka|first2=Kohei|last3=Edwards|first3=Melissa|last4=Bianchi|first4=Vanessa J.|last5=Das|first5=Anirban|last6=Sexton-Oates|first6=Alexandra|last7=Larouche|first7=Valérie|last8=Vanan|first8=Magimairajan I.|last9=Lindhorst|first9=Scott|date=2020-11|title=Germline-driven replication repair-deficient high-grade gliomas exhibit unique hypomethylation patterns|url=https://pubmed.ncbi.nlm.nih.gov/32895736|journal=Acta Neuropathologica|volume=140|issue=5|pages=765–776|doi=10.1007/s00401-020-02209-8|issn=1432-0533|pmid=32895736}}</ref><ref>{{Cite journal|last=Alphones|first=Sheena|last2=Chatterjee|first2=Uttara|last3=Singh|first3=Angad|last4=Das|first4=Anirban|last5=Zameer|first5=Lateef|last6=Achari|first6=Rimpa|last7=Bhattacharya|first7=Arpita|last8=Roy|first8=Paromita|date=2021-08|title=Immunohistochemical screening for mismatch repair protein deficiency in paediatric high-grade gliomas - institutional experience and review of literature|url=https://pubmed.ncbi.nlm.nih.gov/34097097|journal=Child's Nervous System: ChNS: Official Journal of the International Society for Pediatric Neurosurgery|volume=37|issue=8|pages=2521–2530|doi=10.1007/s00381-021-05229-1|issn=1433-0350|pmid=34097097}}</ref><ref>{{Cite journal|last=Amayiri|first=Nisreen|last2=Tabori|first2=Uri|last3=Campbell|first3=Brittany|last4=Bakry|first4=Doua|last5=Aronson|first5=Melyssa|last6=Durno|first6=Carol|last7=Rakopoulos|first7=Patricia|last8=Malkin|first8=David|last9=Qaddoumi|first9=Ibrahim|date=2016-01-15|title=High frequency of mismatch repair deficiency among pediatric high grade gliomas in Jordan|url=https://pubmed.ncbi.nlm.nih.gov/26293621|journal=International Journal of Cancer|volume=138|issue=2|pages=380–385|doi=10.1002/ijc.29724|issn=1097-0215|pmid=26293621}}</ref> typically of the pHGG RTK1 subtype.
  
 
==Additional Information==
 
==Additional Information==

Revision as of 14:59, 4 November 2022

MGMT

Primary Author(s)*

Madina Sukhanova, PhD, FACMG Northwestern University

Cancer Category/Type

Glioneuronal tumour

Cancer Sub-Classification / Subtype

Paediatric-type diffuse high-grade gliomas with three molecular subtypes: RTK2, RTK1, and MYCN

Definition / Description of Disease

This is a distinct entity in the World Health Organization (WHO) classification system within the section of paediatric-type diffuse high-grade gliomas. Distinct methylation profiles and molecular alterations define three subtypes: dpHGG RTK1, dpHGG RTK2, and dpHGG MYCN. Gliomas arising after therapeutic radiation are predominantly of the pHGG RTK1 subtype. Known tumorigenic drivers include TP53, MYCN, ID2, and genes from RAS/MAPK and PI3K pathways.[1] [2] [3] [4]

Synonyms / Terminology

None

Epidemiology / Prevalence

The 2021 WHO classified this entity as pediatric-type based on well defined studies characterized by negative molecular features of H3 and IDH [4][5][6] which have focused only on pediatric patients; thus, the frequency of this tumor type in adults in unknown. Median reported age of patients at the time of diagnosis was 9.8 years. One study reported male prevalence.[6]

Clinical Features

The clinical features are dependent on the tumour location. Symptoms can include seizures and motor or sensory deficits.

Signs and Symptoms Seizures and motor or sensory deficits.
Imaging Findings MRI characteristics are comparable to other high-grade glioma tumour types. MRI typically reveals well-defined margins and homogeneous contrast-enhancement and mild perilesional edema.[7][8]

Sites of Involvement

Main site: supratentorial brain.

Other sites: brainstem, and cerebellum.[6]

Although most of molecular subtypes of dpHGG involve supratentorial brain (96% of dpHGG RTK2, 86% of dpHGG MYCN, and 82% of dpHGG RTK1 tumors), 4% of dpHGG RTK2, 14% of dpHGG MYCN, and 18% of dpHGG RTK1 cases can involve infratentorial/brainstem sites.[6]

Morphologic Features

Morphology of dHGGs, H3-/IDH-wildtype, is consistent with glioblastoma-like features with high cellularity, mitotic activity, microvascular proliferation, and necrosis; however, undifferentiated morphology and areas of glial differentiation can also be noted. pHGG MYCN molecular subtype often consists of large cells with distinct nucleoli, spindle-shaped and epithelioid cells and also reveals areas of diffuse infiltration and circumscribed nodules.[7]

Immunophenotype

Finding Marker
Positive (universal) Neoplastic glial component – GFAP, and/or OLIG2.[3][4]
Positive (subset) dpHGG MYCN molecular subtype can be positive for neuronal markers.
Negative (universal)  IDH1 R132H (normal retained pattern of staining).

H3 p.K28me3 (K27me4) (preserved expression).[7]

Negative (subset) dpHGG MYCN molecular subtype can be negative for glial marker GFAP, and/or OLIG2.

Chromosomal Rearrangements (Gene Fusions)

Fusions listed in the table below were identified in a single study, thus, frequencies in dpHGG H3/IGH-wt should be interpreted with caution.[9]

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Structural variation Prevalence Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
t(3;3)(p21.31;p25.2) FYCO1::RAF1 deletion 11%[9] Unknown Unknown Unknown Results in constitutive activation of kinase domain[9]
t(7;7)(q31.2;q31.32) PTPRZ1::MET deletion 22%[9] Unknown Unknown Unknown Concurrent MET amp is frequently noted[9]
t(7;7)(q31.2;q31.32) CAPZA2::MET deletion 11%[9] Unknown Unknown Unknown Concurrent MET amp is frequently noted[9]
t(9;9)(p31.32;p21.33) GKAP1::NTRK2 deletion 11%[9] Unknown Unknown Unknown Results in constitutive dimerization of receptor[9]

Individual Region Genomic Gain/Loss/LOH

Chr # Gain / Loss / Amp / LOH Minimal Region Genomic Coordinates [Genome Build] Minimal Region Cytoband Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
2 Amplification chr2:15,940,550-15,947,004 [hg38] 2p24.3 Yes [50% dpHGG MYCN subtype] Yes, worst OS[4][6] No MYCN amplification[6][10]
2 Amplification Unknown 2p25.1 No, but recurrent secondary finding [66% of dpHGG MYCN subtype] Unknown No ID2 amplification is often (66%) co-amplified with MYCN[6][10]
4 Amplification/Mutation 4:51819533-54425718 [GRCh38] 4q12 Yes [33% of dpHGG RTK1 subtype] No[6] No PDGFRA alterations[6]
7 Amplification chr7:55,019,017-55,211,628 [GRCh38] 7p11.2 Yes [50% of dpHGG RTK2 subtype] No[6] No EGFR amplification[6]
8 Amplification chr8:127,736,231-127,742,951 [GRCh38] 8q24.21 No, but recurrent in dpHGG MYCN subtype [8%] Unknown No MYC amplification
9 Homozygous loss Variable 9p21.3 No Yes No Deletions result in bi-allelic loss of CDKN2A/B: seen in 6% MYCN subtype, 27% RTK1 subtype; 72% RTK2 subtype.[6][9]

Characteristic Chromosomal Patterns

Chromosomal Pattern Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
Gain of chromosome 7 and loss of chromosome 10 No Yes No Recurrent finding in 42~47% MYCN subtype; 12% RTK1 subtype; 28~50% RTK2 subtype.[6]

Gene Mutations (SNV/INDEL)

Gene; Genetic Alteration Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) Prevalence (COSMIC / TCGA / Other) Concomitant Mutations Mutually Exclusive Mutations Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
MGMT promoter Enzyme, a DNA-repair protein 18% RTK1 subtype and rare in MYCN and RTK2 subtypes. unclear IDH1/2, H3 Unknown Unknown Yes 11% of [6]
PDGFRA Receptor unclear IDH1/2, H3
Unknown Unknown No
TERT promoter Enzyme/ acts as TCG 26% MYCN subtype; 64% RTK2 subtype[6] unclear IDH1/2, H3 Unknown Unknown No
TP53 TSG 67% MYCN subtype; 48% RTK1 subtype; 50% RTK2 subtype[6][9] unclear IDH1/2, H3 Unknown Unknown No

Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Methylation profiling can be used in the diagnosis of this tumor entity and can help to differentiate between three molecular profiles, pHGG RTK1, pHGG RTK2, and pHGG MYCN. Methylation of MGMT has been noted in 11% of pHGG MYCN cases and 18% of RTK1 cases.[6]

Genes and Main Pathways Involved

The pHGG, H3/IDH-wildtype frequently reveals variants in genes encoding members of the TAS/MAPK and PI3K pathways.

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
MET; activating alterations MAPK/ERK pathway activation Increased cell growth and proliferation
RAF1; activating alterations MAPK/ERK pathway activation Increased cell growth and proliferation
NTRK2; activating alterations MAPK/ERK pathway activation Increased cell growth and proliferation

Genetic Diagnostic Testing Methods

  • ·Chromosome microarray  
  • ·Next generation sequencing  
  • ·DNA methylation profiling

Familial Forms

Germline mutations of genes involved in the mismatch repair (MMR) system can be associated with a proportion of pHGG cases,[11][12][13] typically of the pHGG RTK1 subtype.

Additional Information

Put your text here

Links

Put your text placeholder here (use "Link" icon at top of page)

References

  1. Buczkowicz, Pawel; et al. (2014-05). "Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations". Nature Genetics. 46 (5): 451–456. doi:10.1038/ng.2936. ISSN 1546-1718. PMC 3997489. PMID 24705254. Check date values in: |date= (help)
  2. Sturm, Dominik; et al. (2016-02-25). "New Brain Tumor Entities Emerge from Molecular Classification of CNS-PNETs". Cell. 164 (5): 1060–1072. doi:10.1016/j.cell.2016.01.015. ISSN 1097-4172. PMC 5139621. PMID 26919435.
  3. 3.0 3.1 Korshunov, Andrey; et al. (2015-05). "Integrated analysis of pediatric glioblastoma reveals a subset of biologically favorable tumors with associated molecular prognostic markers". Acta Neuropathologica. 129 (5): 669–678. doi:10.1007/s00401-015-1405-4. ISSN 1432-0533. PMID 25752754. Check date values in: |date= (help)
  4. 4.0 4.1 4.2 4.3 Mackay, Alan; et al. (2017-10-09). "Integrated Molecular Meta-Analysis of 1,000 Pediatric High-Grade and Diffuse Intrinsic Pontine Glioma". Cancer Cell. 32 (4): 520–537.e5. doi:10.1016/j.ccell.2017.08.017. ISSN 1878-3686. PMC 5637314. PMID 28966033.
  5. Mackay, Alan; et al. (2018-05-14). "Molecular, Pathological, Radiological, and Immune Profiling of Non-brainstem Pediatric High-Grade Glioma from the HERBY Phase II Randomized Trial". Cancer Cell. 33 (5): 829–842.e5. doi:10.1016/j.ccell.2018.04.004. ISSN 1878-3686. PMC 5956280. PMID 29763623.
  6. 6.00 6.01 6.02 6.03 6.04 6.05 6.06 6.07 6.08 6.09 6.10 6.11 6.12 6.13 6.14 6.15 6.16 Korshunov, Andrey; et al. (2017-09). "H3-/IDH-wild type pediatric glioblastoma is comprised of molecularly and prognostically distinct subtypes with associated oncogenic drivers". Acta Neuropathologica. 134 (3): 507–516. doi:10.1007/s00401-017-1710-1. ISSN 1432-0533. PMID 28401334. Check date values in: |date= (help)
  7. 7.0 7.1 7.2 Tauziède-Espariat, A.; et al. (2020-07-09). "The pediatric supratentorial MYCN-amplified high-grade gliomas methylation class presents the same radiological, histopathological and molecular features as their pontine counterparts". Acta Neuropathologica Communications. 8 (1): 104. doi:10.1186/s40478-020-00974-x. ISSN 2051-5960. PMC 7346460 Check |pmc= value (help). PMID 32646492 Check |pmid= value (help).
  8. Tauziède-Espariat, A.; et al. (2019-06-10). "An integrative radiological, histopathological and molecular analysis of pediatric pontine histone-wildtype glioma with MYCN amplification (HGG-MYCN)". Acta Neuropathologica Communications. 7 (1): 87. doi:10.1186/s40478-019-0738-y. ISSN 2051-5960. PMC 6556947. PMID 31177990.
  9. 9.00 9.01 9.02 9.03 9.04 9.05 9.06 9.07 9.08 9.09 9.10 Deng, Maximilian Y.; et al. (2021-09-20). "Radiation-induced gliomas represent H3-/IDH-wild type pediatric gliomas with recurrent PDGFRA amplification and loss of CDKN2A/B". Nature Communications. 12 (1): 5530. doi:10.1038/s41467-021-25708-y. ISSN 2041-1723. PMC 8452680 Check |pmc= value (help). PMID 34545083 Check |pmid= value (help).
  10. 10.0 10.1 Capper, David; et al. (2018-03-22). "DNA methylation-based classification of central nervous system tumours". Nature. 555 (7697): 469–474. doi:10.1038/nature26000. ISSN 1476-4687. PMC 6093218. PMID 29539639.
  11. Dodgshun, Andrew J.; et al. (2020-11). "Germline-driven replication repair-deficient high-grade gliomas exhibit unique hypomethylation patterns". Acta Neuropathologica. 140 (5): 765–776. doi:10.1007/s00401-020-02209-8. ISSN 1432-0533. PMID 32895736 Check |pmid= value (help). Check date values in: |date= (help)
  12. Alphones, Sheena; et al. (2021-08). "Immunohistochemical screening for mismatch repair protein deficiency in paediatric high-grade gliomas - institutional experience and review of literature". Child's Nervous System: ChNS: Official Journal of the International Society for Pediatric Neurosurgery. 37 (8): 2521–2530. doi:10.1007/s00381-021-05229-1. ISSN 1433-0350. PMID 34097097 Check |pmid= value (help). Check date values in: |date= (help)
  13. Amayiri, Nisreen; et al. (2016-01-15). "High frequency of mismatch repair deficiency among pediatric high grade gliomas in Jordan". International Journal of Cancer. 138 (2): 380–385. doi:10.1002/ijc.29724. ISSN 1097-0215. PMID 26293621.

(use "Cite" icon at top of page)

EXAMPLE Book

  1. Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p129-171.

Notes

*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.