EBV-positive nodal T- and NK-cell lymphoma

From Compendium of Cancer Genome Aberrations
Revision as of 18:52, 7 October 2024 by Fnu.Monika (talk | contribs)
Jump to navigation Jump to search


Haematolymphoid Tumours (WHO Classification, 5th ed.)

(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click nearby within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)

Primary Author(s)*

FNU Monika, MBBS; Andrew Siref, MD

Creighton University, Omaha, NE

WHO Classification of Disease

(Will be autogenerated; Book will include name of specific book and have a link to the online WHO site)

Structure Disease
Book
Category
Family
Type
Subtype(s)

Definition / Description of Disease

  • EBV-positive nodal T- and NK-cell lymphoma is a rare EBV-positive lymphoma of cytotoxic T- or NK-cell lineage, primarily involving lymph nodes in adults.[1]
  • Is a distinct entity in the Fifth WHO classification and as a provisional entity in the international consensus classification 2022.[2][3]

Synonyms / Terminology

nodal EBV+ cytotoxic T-cell lymphoma; nodal peripheral T-cell lymphoma, EBV-positive; primary nodal EBV-positive T/NK-cell lymphoma.[1]

Epidemiology / Prevalence

  • Rare lymphoma
  • Occurs mostly in eastern Asia
  • Affects mainly older adults (median age: 61–64 years) although cases in younger adults have been reported
  • The M:F ratio is 1.5–3.8:1 [1][4]

Clinical Features

Signs and Symptoms[1][5][6][7] Lymphadenopathy

Advanced clinical stage III/IV disease at diagnosis (86–88% of cases)

B symptoms (72–80%)

High or high/intermediate International Prognostic Index (IPI) score (64–87%)

Laboratory Findings Anemia

Leukopenia

Thrombocytopenia

Elevated serum lactate dehydrogenase

Sites of Involvement

  • Primarily lymph nodes (most commonly cervical, inguinal, and axillary), although limited extranodal involvement can be seen[1]
  • The liver and/or bone marrow (24–60% of cases); other extranodal sites, such as the skin and gastrointestinal tract, are less commonly involved[5][6][8]
  • No nasal involvement has been reported[1]

Morphologic Features

  • Architectural effacement of lymph node by a diffuse infiltrate of monotonous medium-sized to large lymphoid cells
  • The neoplastic cells have centroblastic appearance with vesicular chromatin
  • Less frequently, the neoplastic cells display large pleomorphic or mixed-cell morphology with abundant histiocytes and small lymphocytes in the background[1][9]
  • Lacks classic morphological findings of angioinvasion and necrosis seen in extranodal positive T- and NK-cell lymphomas[5]

Immunophenotype

Based on T-cell receptor protein expression and/or clonal TR gene rearrangement, EBV-positive nodal T- and NK-cell lymphoma immunophenotype is more of a T-cell lineage rather than NK-cell (> 80% of cases)

Finding Marker
Positive (universal) CD3, CD2, CD8 (63–72%) and CD56 (7–22%) cytotoxic molecules (TIA1, granzyme B, and perforin), EBER (ISH)
Positive (subset) TCRβ (43–64%), TCRγ (0–13%), CD30[2]
Negative (universal) CD4, CD5
Negative (subset) TCRβ and TCRγ (25%), CD4-/CD8- (21%), CD4+/CD8- (8%), CD4-/CD8+ (64%)[6]

Chromosomal Rearrangements (Gene Fusions)

No chromosomal rearrangements are identified.

The combination of the 2 pieces of chromosome 9 formed the fusion of the promoter plus exon 1 of DOCK8 and exons 2-7 of PD-L1 (DOCK8/PD-L1 fusion). https://doi.org/10.1182/bloodadvances.2023012019

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
NA NA NA NA NA NA NA NA

Individual Region Genomic Gain / Loss / LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.)

Chr # Gain / Loss / Amp / LOH Minimal Region Genomic Coordinates [Genome Build] Minimal Region Cytoband Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
3 Loss 3q26.1 3q26.1 No Yes No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).

22q11.23 Loss 22q11.23 22q11.23 No No No EXAMPLE:

Common recurrent secondary finding for t(8;21) (add reference).

Characteristic Chromosomal Patterns

Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.)

Chromosomal Pattern Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: Yes EXAMPLE: No EXAMPLE: No EXAMPLE:

See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).

Gene Mutations (SNV / INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.)

Gene; Genetic Alteration Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) Prevalence (COSMIC / TCGA / Other) Concomitant Mutations Mutually Exclusive Mutations Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE: TP53; Variable LOF mutations

EXAMPLE:

EGFR; Exon 20 mutations

EXAMPLE: BRAF; Activating mutations

EXAMPLE: TSG EXAMPLE: 20% (COSMIC)

EXAMPLE: 30% (add Reference)

EXAMPLE: IDH1 R123H EXAMPLE: EGFR amplification EXAMPLE: Yes EXAMPLE: No EXAMPLE: No EXAMPLE: Excludes hairy cell leukemia (HCL) (add reference).

Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Put your text here

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Can include references in the table. Do not delete table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program

Genetic Diagnostic Testing Methods

Put your text here

Familial Forms

Put your text here (Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.)

Additional Information

Put your text here

Links

(use the "Link" icon that looks like two overlapping circles at the top of the page) (Instructions: Highlight text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "http://www." portion.)

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)

Notes

*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Siok-Bian Ng, et al. EBV-positive nodal T- and NK-cell lymphoma. In: WHO Classification of Tumours Editorial Board. Haematolymphoid tumours [Internet]. Lyon (France): International Agency for Research on Cancer; 2024 [cited 2024 Oct 6]. (WHO classification of tumors series, 5th ed.; vol. 11). Available from: BlueBooksOnline (who.int)
  2. 2.0 2.1 Yu, Fang; et al. (2024-04). "EBV-positive Nodal T-Cell and NK-Cell Lymphoma: A Study of 26 Cases Including a Subset With Strong CD30 Expression Mimicking Anaplastic Large Cell Lymphoma". American Journal of Surgical Pathology. 48 (4): 406–416. doi:10.1097/PAS.0000000000002184. ISSN 0147-5185. Check date values in: |date= (help)
  3. Kato, Seiichi; et al. (2024-05-14). "EBV+ nodal T/NK-cell lymphoma associated with clonal hematopoiesis and structural variations of the viral genome". Blood Advances. 8 (9): 2138–2147. doi:10.1182/bloodadvances.2023012019. ISSN 2473-9529. PMC PMC11068532 Check |pmc= value (help). PMID 38429084 Check |pmid= value (help).CS1 maint: PMC format (link)
  4. Ha, Sang Yun; et al. (2013-07-01). "Epstein–Barr virus-positive nodal peripheral T cell lymphomas: Clinicopathologic and gene expression profiling study". Pathology - Research and Practice. 209 (7): 448–454. doi:10.1016/j.prp.2013.04.013. ISSN 0344-0338.
  5. 5.0 5.1 5.2 Jeon, Yoon Kyung; et al. (2015-07). "Epstein-Barr virus–positive nodal T/NK-cell lymphoma: an analysis of 15 cases with distinct clinicopathological features". Human Pathology. 46 (7): 981–990. doi:10.1016/j.humpath.2015.03.002. Check date values in: |date= (help)
  6. 6.0 6.1 6.2 Kato, Seiichi; et al. (2015-04). "T-cell Receptor (TCR) Phenotype of Nodal Epstein-Barr Virus (EBV)-positive Cytotoxic T-cell Lymphoma (CTL): A Clinicopathologic Study of 39 Cases". American Journal of Surgical Pathology. 39 (4): 462–471. doi:10.1097/PAS.0000000000000323. ISSN 0147-5185. Check date values in: |date= (help)
  7. Yu, Fang; et al. (2024-04). "EBV-positive Nodal T-Cell and NK-Cell Lymphoma: A Study of 26 Cases Including a Subset With Strong CD30 Expression Mimicking Anaplastic Large Cell Lymphoma". American Journal of Surgical Pathology. 48 (4): 406–416. doi:10.1097/PAS.0000000000002184. ISSN 0147-5185. Check date values in: |date= (help)
  8. Yamashita, Daisuke; et al. (2018-08). "Reappraisal of nodal Epstein‐Barr Virus‐negative cytotoxic T‐cell lymphoma: Identification of indolent CD 5 + diseases". Cancer Science. 109 (8): 2599–2610. doi:10.1111/cas.13652. ISSN 1347-9032. PMC 6113510. PMID 29845715. Check date values in: |date= (help)CS1 maint: PMC format (link)
  9. Attygalle, Ayoma D; et al. (2014-01). "Peripheral T‐cell and NK ‐cell lymphomas and their mimics; taking a step forward – report on the lymphoma workshop of the XVI th meeting of the European Association for Haematopathology and the Society for Hematopathology". Histopathology. 64 (2): 171–199. doi:10.1111/his.12251. ISSN 0309-0167. PMC 6364972. PMID 24128129. Check date values in: |date= (help)CS1 maint: PMC format (link)