Acute myeloid leukaemia, myelodysplasia-related

Revision as of 17:19, 6 September 2024 by Bailey.Glen (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Haematolymphoid Tumours (WHO Classification, 5th ed.)

editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Acute Myeloid Leukemia (AML) with Myelodysplasia-Related Changes.

(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)

Primary Author(s)*

Fei Yang, MD, FACMG
Oregon Health & Science University, Portland, OR

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category Myeloid proliferations and neoplasms
Family Acute myeloid leukaemia
Type Acute myeloid leukaemia with defining genetic abnormalities
Subtype(s) Acute myeloid leukaemia, myelodysplasia-related

Definition / Description of Disease

Acute myeloid leukemia with myelodysplastic-related changes (AML-MRC) is an acute leukemia with 20% peripheral blood or bone marrow blasts with morphological features of myelodysplasia, or occurring in patients with a prior history of a MDS or MDS/MPN, or with MDS-related cytogenetic abnormalities, in the absence of prior history of cytotoxic or radiation therapy for an unrelated disease, and of recurrent cytogenetic aberrations or genetic abnormalities (mutated NPM1 or biallelic mutation of CEBPA) as described in HAEM4:Acute Myeloid Leukemia (AML) with Recurrent Genetic Abnormalities. This category has been retained in the 2016 revision to the World Health Organization (WHO) classification system with more refined criteria[1][2].

Synonyms / Terminology

Acute myeloid leukemia with multilineage dysplasia; acute myeloid leukemia with prior myelodysplastic syndrome

Epidemiology / Prevalence

AML-MRC is reported to account for 24-35% of all cases in AML. It occurs mainly in elderly patients and is rare in children[1][2].

Clinical Features

Put your text here and fill in the table (Instruction: Can include references in the table. Do not delete table.)

Signs and Symptoms EXAMPLE: Asymptomatic (incidental finding on complete blood counts)

EXAMPLE: B-symptoms (weight loss, fever, night sweats)

EXAMPLE: Fatigue

EXAMPLE: Lymphadenopathy (uncommon)

Laboratory Findings EXAMPLE: Cytopenias

EXAMPLE: Lymphocytosis (low level)


editv4:Clinical Features
The content below was from the old template. Please incorporate above.

AML-MRC often presents with severe pancytopenia. Cases with 20-29% blasts may present a stable clinical course and slow progression similar to that of MDS than that of AML.

Sites of Involvement

Bone marrow.

Morphologic Features

  • Multilineage dysplasia: present in ≥50% of the cells in at least two haematopoietic cell lines.
  • Dysgranulopoiesis: neutrophils is characteristic of hypogranular cytoplasm, hyposegmented or bizarrely segmented nuclei.
  • Dyserythropoiesis: ring sideroblasts, cytoplasmic vacuoles, periodic acid-Schiff (PAS) positivity.
  • Dysmegakaryopoiesis: micromegakaryocytes, normal- or large-sized megakaryocytes with non-lobated or multiple nuclei.

Immunophenotype

Immunophenotyping results are variable due to the heterogeneity of the underlying genetic changes.

  • Myeloblasts have an expression of CD34, CD117, increased expression in CD14, variable expression in panmyeloid markers (CD13, CD33).
  • Background granulocytic cells may have higher CD33 expression, and under-expression of CD45, CD11b, and CD15.
  • Background monocytes have lower expression of CD14, CD56, and CD45.
Finding Marker
Positive (universal) EXAMPLE: CD1
Positive (subset) EXAMPLE: CD2
Negative (universal) EXAMPLE: CD3
Negative (subset) EXAMPLE: CD4

Chromosomal Rearrangements (Gene Fusions)

Put your text here and fill in the table

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: 3'ABL1 / 5'BCR EXAMPLE: der(22) EXAMPLE: 20% (COSMIC)

EXAMPLE: 30% (add reference)

Yes No Yes EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).


editv4:Chromosomal Rearrangements (Gene Fusions)
The content below was from the old template. Please incorporate above.

Balanced translocations are less common in AML-MRC, and often involve 5q32-33 and 11q23.3.

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence
t(3;5)(q25.3;q35.1) 5'NPM1/3'MLF1[3] der(5) unknown
t(11;16)(q23;p13.3) 5'KMT2A/3'CREBBP or 5'CREBBP/3'KMT2A[4] der(11) or der(16) unknown
t(2;11)(p21;q23.3) KMT2A rearrangement, partner gene unknown[5] unknown unknown
t(2;11)(p21;q23.3) MiR-125b-1 overexpression[6] der(11) unknown


editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).
Please incorporate this section into the relevant tables found in:
  • Chromosomal Rearrangements (Gene Fusions)
  • Individual Region Genomic Gain/Loss/LOH
  • Characteristic Chromosomal Patterns
  • Gene Mutations (SNV/INDEL)

Diagnosis

  • FCI assessment of granulocytes and monocytes, in addition to blasts, may be valuable in aid distinguishing AML-MRC from AML-NOS[7].
  • Characteristic cytogenetic aberrations mentioned above are sufficient for the diagnosis of AML-MRC in the context of other criteria being met[1][2].
  • Differential diagnosis are MDS with excess blasts, pure erythroid leukemia, acute megakaryoblastic leukemia and AML-NOS[1][2].

Prognosis

  • AML-MRC generally has a poor prognosis with a lower rate of complete remission than in other AML subtypes[1][2].
  • TP53 mutations are associated with a complex karyotype and an even worse prognosis in this entity[8][9][10].
  • ASXL1 mutations are more frequent in AML-MRC, and are associated with a higher proportion of marrow dysgranulopoiesis and inferior 2-year overall survival[8][9].
  • Mutations in spliceosome gene U2AF1 are associated with trilineage morphologic dysplasia, absence of clinical remission, poor overall survival and poor disease-free survival[10].

Individual Region Genomic Gain / Loss / LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.)

Chr # Gain / Loss / Amp / LOH Minimal Region Genomic Coordinates [Genome Build] Minimal Region Cytoband Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7:1- 159,335,973 [hg38]

EXAMPLE:

chr7

Yes Yes No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8:1-145,138,636 [hg38]

EXAMPLE:

chr8

No No No EXAMPLE:

Common recurrent secondary finding for t(8;21) (add reference).

editv4:Genomic Gain/Loss/LOH
The content below was from the old template. Please incorporate above.

Genomic copy number gain or loss have not been described in AML-MRC currently. There is a case report describing isochromosome 17q and LOH in a patient with AML-MRC, whose clinical presentation involved extreme thrombocytosis[11].

Chromosome Number Gain/Loss/Amp/LOH Region
17 LOH chr17:59,000,001-159,138,663

Characteristic Chromosomal Patterns

Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.)

Chromosomal Pattern Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE:

Co-deletion of 1p and 18q

Yes No No EXAMPLE:

See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).

editv4:Characteristic Chromosomal Aberrations / Patterns
The content below was from the old template. Please incorporate above.

Cytogenetic abnormalities sufficient for the diagnosis of AML-MRC when ≥20% peripheral blood or bone marrow blasts are present and prior therapy has been excluded:

Complex karyotype (3 or more abnormalities)


Unbalanced abnormalities:
Loss of chromosome 7 or del(7q)
del(5q) or t(5q)
Isochromosome 17q or t(17p)
Loss of chromosome 13 or del(13q)
del(11q)
del(12p) or t(12p)
idic(X)(q13)


Balanced abnormalities:
t(11;16)(q23.3;p13.3)
t(3;21)(q26.2;q22.1)
t(1;3)(p36.3;q21.2)
t(2;11)(p21;q23.3)
t(5;12)(q32;p13.2)
t(5;7)(q32;q11.2)
t(5;17)(q32;p13.2)
t(5;10)(q32;q21.2)
t(3;5)(q25.3;q35.1)

Gene Mutations (SNV / INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.)

Gene; Genetic Alteration Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) Prevalence (COSMIC / TCGA / Other) Concomitant Mutations Mutually Exclusive Mutations Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE: TP53; Variable LOF mutations

EXAMPLE:

EGFR; Exon 20 mutations

EXAMPLE: BRAF; Activating mutations

EXAMPLE: TSG EXAMPLE: 20% (COSMIC)

EXAMPLE: 30% (add Reference)

EXAMPLE: IDH1 R123H EXAMPLE: EGFR amplification EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).


Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.


editv4:Gene Mutations (SNV/INDEL)
The content below was from the old template. Please incorporate above.

Somatic genetic mutations commonly found in AML or MDS have been reported in AML-MRC. There are no characteristic genetic mutations fully specific for this entity. The most frequently mutated genes reported in AML-MRC are listed below.

Gene Mutation Oncogene/Tumor Suppressor/Other Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) Prevalence (COSMIC/TCGA/Other)
TP53 Missense, nonsense, frameshift Tumor Suppressor LOF 22%
ASXL1 Frameshift, nonsense, missense Tumor Suppressor LOF 21-35%
U2AF1 Missense Oncogene GOF 16%
SF3B1 Missense Oncogene GOF 5.8%

Other Mutations

Type Gene/Region/Other
Concomitant Mutations EXAMPLE: IDH1 R123H
Secondary Mutations EXAMPLE: Trisomy 7
Mutually Exclusive EXAMPLE: EGFR Amplification

Epigenomic Alterations

Epigenetic aberration has not been described in AML-MRC currently.

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Can include references in the table. Do not delete table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE:  KMT2C and ARID1A; Inactivating mutations EXAMPLE:  Histone modification, chromatin remodeling EXAMPLE:  Abnormal gene expression program

Genetic Diagnostic Testing Methods

Conventional chromosome analysis; FISH with MDS and AML panel; molecular genetic analysis for mutations such as targeted Next-generation sequencing (NGS) panel.

Familial Forms

Put your text here (Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.)

Additional Information

Put your text here

Links

http://atlasgeneticsoncology.org/Anomalies/TL_t0305q25q35ID3404.html
http://atlasgeneticsoncology.org/Anomalies/t1116q23p13ID1120.html
http://atlasgeneticsoncology.org/Anomalies/t0211p21q23ID1333.html

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)

  1. 1.0 1.1 1.2 1.3 1.4 Arber, Daniel A.; et al. (2016). "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia". Blood. 127 (20): 2391–2405. doi:10.1182/blood-2016-03-643544. ISSN 1528-0020. PMID 27069254.
  2. 2.0 2.1 2.2 2.3 2.4 Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p160-161.
  3. Arber, Daniel A.; et al. (2003). "Detection of NPM/MLF1 fusion in t(3;5)-positive acute myeloid leukemia and myelodysplasia". Human Pathology. 34 (8): 809–813. doi:10.1016/s0046-8177(03)00251-x. ISSN 0046-8177. PMID 14506644.
  4. Zhang, Yanming; et al. (2004). "Characterization of genomic breakpoints in MLL and CBP in leukemia patients with t(11;16)". Genes, Chromosomes & Cancer. 41 (3): 257–265. doi:10.1002/gcc.20077. ISSN 1045-2257. PMID 15334549.
  5. Fleischman, E. W.; et al. (1999). "MLL is involved in a t(2;11)(p21;q23) in a patient with acute myeloblastic leukemia". Genes, Chromosomes & Cancer. 24 (2): 151–155. ISSN 1045-2257. PMID 9885982.
  6. Bousquet, Marina; et al. (2008). "Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation". The Journal of Experimental Medicine. 205 (11): 2499–2506. doi:10.1084/jem.20080285. ISSN 1540-9538. PMC 2571925. PMID 18936236.
  7. Weinberg, Olga K.; et al. (2017). "Diagnostic work-up of acute myeloid leukemia". American Journal of Hematology. 92 (3): 317–321. doi:10.1002/ajh.24648. ISSN 1096-8652. PMID 28066929.
  8. 8.0 8.1 Devillier, Raynier; et al. (2015). "Role of ASXL1 and TP53 mutations in the molecular classification and prognosis of acute myeloid leukemias with myelodysplasia-related changes". Oncotarget. 6 (10): 8388–8396. doi:10.18632/oncotarget.3460. ISSN 1949-2553. PMC 4480760. PMID 25860933.
  9. 9.0 9.1 Devillier, Raynier; et al. (2012). "Acute myeloid leukemia with myelodysplasia-related changes are characterized by a specific molecular pattern with high frequency of ASXL1 mutations". American Journal of Hematology. 87 (7): 659–662. doi:10.1002/ajh.23211. ISSN 1096-8652. PMID 22535592.
  10. 10.0 10.1 Ohgami, Robert S.; et al. (2015). "Next-generation sequencing of acute myeloid leukemia identifies the significance of TP53, U2AF1, ASXL1, and TET2 mutations". Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 28 (5): 706–714. doi:10.1038/modpathol.2014.160. ISSN 1530-0285. PMC 5436901. PMID 25412851.
  11. You, Eunkyoung; et al. (2015). "A novel case of extreme thrombocytosis in acute myeloid leukemia associated with isochromosome 17q and copy neutral loss of heterozygosity". Annals of Laboratory Medicine. 35 (3): 366–369. doi:10.3343/alm.2015.35.3.366. ISSN 2234-3814. PMC 4390708. PMID 25932448.

Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage).  Additional global feedback or concerns are also welcome. *Citation of this Page: “Acute myeloid leukaemia, myelodysplasia-related”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 09/6/2024, https://ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia,_myelodysplasia-related.