Primary myelofibrosis
Haematolymphoid Tumours (5th ed.)
This page is under construction |
editHAEM5 Conversion NotesThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Primary Myelofibrosis (PMF).
Primary Author(s)*
T. Niroshi Senaratne, UCLA
Cancer Category / Type
Myeloproliferative neoplasm (MPN)
Cancer Sub-Classification / Subtype
Primary myelofibrosis (PMF)
Definition / Description of Disease
Clonal MPN characterized by proliferation of predominantly abnormal megakaryocytes and granulocytes in the bone marrow.
Prefibrotic/early PMF (pre-PMF) is associated with hypercellular bone marrow with absent or minimal reticulin fibrosis.
Overt fibrotic PMF (classic PMF) is associated with marked reticulin or collagen fibrosis in the bone marrow, often with osteosclerosis, leukoerythroblastosis in the blood, hepatomegaly, and splenomegaly.
Synonyms / Terminology
Chronic idiopathic myelofibrosis; myelofibrosis/sclerosis with myeloid metaplasia; agnogenic myeloid metaplasia; megakaryocytic myelosclerosis; idiopathic myelofibrosis; myelofibrosis with myeloid metaplasia; myelofibrosis as a result of myeloproliferative disease
Epidemiology / Prevalence
Estimated annual incidence of overt PMF is 0.5-1.5 cases per 100,000 population, with both genders nearly equally affected. Incidence of pre-PMF is not known. The age of occurrence is commonly during 60s-70s.
Clinical Features
Put your text here and fill in the table (Instruction: Can include references in the table)
Signs and Symptoms | EXAMPLE Asymptomatic (incidental finding on complete blood counts)
EXAMPLE B-symptoms (weight loss, fever, night sweats) EXAMPLE Fatigue EXAMPLE Lymphadenopathy (uncommon) |
Laboratory Findings | EXAMPLE Cytopenias
EXAMPLE Lymphocytosis (low level) |
editv4:Clinical FeaturesThe content below was from the old template. Please incorporate above.As many as 30% of patients with PMF may be asymptomatic at the time of diagnosis, and are found by detection of splenomegaly, anemia, leukocytosis and/or thrombocytosis. More than 50% of patients experience constitutional symptoms.
Leukemic transformation may occur in 4-20% of patients and is associated with a poor prognosis.
Sites of Involvement
The bone marrow and blood are always involved. In later stages of the disease there is also extramedullary hematopoiesis, particularly in the spleen.
Morphologic Features
Pre-PMF: hypercellular bone marrow, with increase in neutrophils and atypical megakaryocytes
Overt PMF: reticulin or collagen fibrosis (fibrosis grades 2 or 3), often with collagen fibrosis and osteosclerosis. Most often the bone marrow is normo- or hypocellular. Atypical megakaryocytes are present in large clusters or sheets.
Immunophenotype
Put your text here and fill in the table (Instruction: Can include references in the table)
Finding | Marker |
---|---|
Positive (universal) | EXAMPLE CD1 |
Positive (subset) | EXAMPLE CD2 |
Negative (universal) | EXAMPLE CD3 |
Negative (subset) | EXAMPLE CD4 |
Chromosomal Rearrangements (Gene Fusions)
Put your text here and fill in the table
Chromosomal Rearrangement | Genes in Fusion (5’ or 3’ Segments) | Pathogenic Derivative | Prevalence | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
EXAMPLE t(9;22)(q34;q11.2) | EXAMPLE 3'ABL1 / 5'BCR | EXAMPLE der(22) | EXAMPLE 20% (COSMIC)
EXAMPLE 30% (add reference) |
Yes | No | Yes | EXAMPLE
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). |
editv4:Chromosomal Rearrangements (Gene Fusions)The content below was from the old template. Please incorporate above.
Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence N/A N/A N/A N/A Note: By definition, PMF should be negative for BCR-ABL1 fusion. In very rare cases, a BCR-ABL1 rearrangement is acquired [Ref]
Balanced translocations are rare in PMF and few are recurrent. One recurrent unbalanced translocation has been described, der(6)t(1;6)(q21;p21) resulting in gain of 1q and loss of 6p [Dingli et al 2005; Djordjevic et al., 2007].
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).Please incorporate this section into the relevant tables found in:
- Chromosomal Rearrangements (Gene Fusions)
- Individual Region Genomic Gain/Loss/LOH
- Characteristic Chromosomal Patterns
- Gene Mutations (SNV/INDEL)
Since the mutations and chromosome aberrations detected in PMF can also be found in other MPN, genetic findings alone cannot be used to make the diagnosis of PMF.
There are multiple prognostic systems for PMF that take into account genetic information. In 2011 the DIPSS (Dynamic International Prognostic Scoring System for primary myelofibrosis) was updated to incorporate prognostic information from karyotype [Gangat et al 2011]. More recently, a scoring system incorporating both cytogenetic and molecular information was developed, the Mutation-Enhanced International Prognostic Score System or MIPSS70-plus [Guglielmelli et al 2018], as well as prognostic scoring system based only on genetics, the Genetically Inspired Prognostic Scoring System or GIPSS [Tefferi et al 2018a] were developed.
DIPSS-plus (2011): “Unfavorable karyotype” including complex karyotypes or the presence of one or two abnormalities including +8, −7/7q−, i(17q), inv(3), −5/5q−, 12p− or 11q23 rearrangement.
MIPSS70-plus (2018): “Very high risk (VHR) karyotype” defined as single/multiple abnormalities of -7, i(17q), inv(3)/3q21, 12p-/12p11.2, 11q-/11q23, or other autosomal trisomies not including + 8/ + 9 (e.g., +21, +19); “Favorable” including normal karyotype or sole abnormalities of 13q-, +9, 20q-, chromosome 1 translocation/duplication or sex chromosome abnormality including -Y; and “Unfavorable” including all other abnormalities. [Tefferi et al 2018b]
“HMR” (high molecular risk) mutations defined as presence of one or more mutations in EZH2, ASXL1, IDH1/IDH2, and SRSF2 [Vannucchi et al 2013], subsequently updated to also include mutations in U2AF1 [Tefferi et al 2018c].
GIPSS (2018): Karyotype classification using same definition as described above for MIPSS70-plus. Molecular findings associated with high risk were absence of type 1/like CALR mutations [Tefferi et al 2018e] or presence of mutations in ASXL1, SRSF2, or U2AF1Q157 (EZH2 and IDH1/2 mutations remained non-significant during multivariable analysis).
In terms of therapeutic options, the preferred option for high risk patients is allogenic stem cell transplant, while low risk patients may be followed with observation only. For intermediate risk patients, treatments including JAK2 inhibitors may be used [Tefferi et al 2018d].
Individual Region Genomic Gain / Loss / LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.)
Chr # | Gain / Loss / Amp / LOH | Minimal Region Genomic Coordinates [Genome Build] | Minimal Region Cytoband | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
EXAMPLE
7 |
EXAMPLE Loss | EXAMPLE
chr7:1- 159,335,973 [hg38] |
EXAMPLE
chr7 |
Yes | Yes | No | EXAMPLE
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference). |
EXAMPLE
8 |
EXAMPLE Gain | EXAMPLE
chr8:1-145,138,636 [hg38] |
EXAMPLE
chr8 |
No | No | No | EXAMPLE
Common recurrent secondary finding for t(8;21) (add reference). |
editv4:Genomic Gain/Loss/LOHThe content below was from the old template. Please incorporate above.Put your text here and/or fill in the table
Chromosome Number Gain/Loss/Amp/LOH Region 2 EXAMPLE Gain EXAMPLE chr8:0-1000000 3 EXAMPLE Loss EXAMPLE chr7:0-1000000
Characteristic Chromosomal Patterns
Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis)
Chromosomal Pattern | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|
EXAMPLE
Co-deletion of 1p and 18q |
Yes | No | No | EXAMPLE:
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). |
editv4:Characteristic Chromosomal Aberrations / PatternsThe content below was from the old template. Please incorporate above.Approximately 30-42.6% of PMF cases show cytogenetic abnormalities, with more advanced cases showing increasing frequency of abnormalities. The most common are del(20q) (19-33%) and del(13q) (14-23%), with additional abnormalities including trisomy 8 (8-16%), trisomy 9 (3-14%), and abnormalities of chromosome 1 (6-28%).
Disease progression is associated with additional abnormalities, including gain of 1q (3-19%), del(5q) (3-6%), chromosome 7 abnormalities (5-10%), del(17p) and in rare cases i(17q) [Ref: Vandenberghe and Michaux, 2015 in Cancer Cytogenetics (Eds: Heim and Mitelman); see also Wassie et al 2015].
Gene Mutations (SNV / INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.)
Gene; Genetic Alteration | Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) | Prevalence (COSMIC / TCGA / Other) | Concomitant Mutations | Mutually Exclusive Mutations | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|---|
EXAMPLE: TP53; Variable LOF mutations
EXAMPLE: EGFR; Exon 20 mutations EXAMPLE: BRAF; Activating mutations |
EXAMPLE: TSG | EXAMPLE: 20% (COSMIC)
EXAMPLE: 30% (add Reference) |
EXAMPLE: IDH1 R123H | EXAMPLE: EGFR amplification | EXAMPLE: Excludes hairy cell leukemia (HCL) (add reference).
|
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
Epigenomic Alterations
Put your text here
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Can include references in the table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
editv4:Genes and Main Pathways InvolvedThe content below was from the old template. Please incorporate above.JAK2 mutations result in constitutive activation of JAK2 signalling. CALR and MPL mutations also result in activation of the same pathway.
Genetic Diagnostic Testing Methods
Initial testing for JAK2 V617F mutation, followed by testing for CALR and MPL if negative. Karyotype studies as well as next generation sequencing panels for genes associated with myeloid neoplasms provide important prognostic information.
Familial Forms
Rare familial cases of bone marrow fibrosis in children have been reported but it is unclear how many of these have a myeloproliferative neoplasm [Rumi and Cazzola 2017].
Additional Information
Put your text here
Links
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome. *Citation of this Page: “Primary myelofibrosis”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 12/7/2023, https://ccga.io/index.php/HAEM5:Primary_myelofibrosis.