Acute Erythroid Leukemia
This page is under construction |
Primary Author(s)*
Ashwini Yenamandra PhD FACMG
Cancer Category/Type
Acute Myeloid Leukemia
Cancer Sub-Classification / Subtype
Pure Erythroid Leukemia (PEL) is the only subtype in Acute Erythroid Leukemia (AEL).
Definition / Description of Disease
In the 2008 WHO classification Acute Erythroid leukemia (AEL) was classified into two subtypes, one subtype was Erythroleukemia and second subtype was pure erythroid leukemia (PEL). However, in the 2016 WHO update, erythroleukemia was merged into myelodysplastic syndrome, and PEL was described as the only subtype of AEL [1-12] PEL is a rare form of acute leukemia with an aggressive clinical course and is characterized by an uncontrolled proliferation of immature erythroid precursors (proerythroblastic or undifferentiated) [1-12].
Synonyms / Terminology
Put your text here
Epidemiology / Prevalence
Put your text here
Clinical Features
Put your text here
Sites of Involvement
Put your text here
Morphologic Features
Put your text here
Immunophenotype
Put your text here and/or fill in the table
Finding | Marker |
---|---|
Positive (universal) | EXAMPLE CD1 |
Positive (subset) | EXAMPLE CD2 |
Negative (universal) | EXAMPLE CD3 |
Negative (subset) | EXAMPLE CD4 |
Chromosomal Rearrangements (Gene Fusions)
Put your text here and/or fill in the table
Chromosomal Rearrangement | Genes in Fusion (5’ or 3’ Segments) | Pathogenic Derivative | Prevalence |
---|---|---|---|
EXAMPLE t(9;22)(q34;q11.2) | EXAMPLE 3'ABL1 / 5'BCR | EXAMPLE der(22) | EXAMPLE 5% |
EXAMPLE t(8;21)(q22;q22) | EXAMPLE 5'RUNX1 / 3'RUNXT1 | EXAMPLE der(8) | EXAMPLE 5% |
Characteristic Chromosomal Aberrations / Patterns
Put your text here
Genomic Gain/Loss/LOH
Put your text here and/or fill in the table
Chromosome Number | Gain/Loss/Amp/LOH | Region |
---|---|---|
EXAMPLE 8 | EXAMPLE Gain | EXAMPLE chr8:0-1000000 |
EXAMPLE 7 | EXAMPLE Loss | EXAMPLE chr7:0-1000000 |
Gene Mutations (SNV/INDEL)
Put your text here and/or fill in the tables
Gene | Mutation | Oncogene/Tumor Suppressor/Other | Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) | Prevalence (COSMIC/TCGA/Other) |
---|---|---|---|---|
EXAMPLE TP53 | EXAMPLE R273H | EXAMPLE Tumor Suppressor | EXAMPLE LOF | EXAMPLE 20% |
Other Mutations
Type | Gene/Region/Other |
---|---|
Concomitant Mutations | EXAMPLE IDH1 R123H |
Secondary Mutations | EXAMPLE Trisomy 7 |
Mutually Exclusive | EXAMPLE EGFR Amplification |
Epigenomics (Methylation)
Put your text here
Genes and Main Pathways Involved
Put your text here
Diagnostic Testing Methods
Put your text here
Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications)
Put your text here
Familial Forms
Put your text here
Other Information
Put your text here
Links
Put your links here
References
EXAMPLE Book
- Arber DA, et al., (2008). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, 4thedition.Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Vardiman JW, Editors. IARC Press: Lyon, France, p117-118.
EXAMPLE Journal Article
- Li Y, et al., (2001). Fusion of two novel genes, RBM15 and MKL1, in the t(1;22)(p13;q13) of acute megakaryoblastic leukemia. Nat Genet 28:220-221, PMID 11431691.
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.