T-large granular lymphocytic leukaemia
Haematolymphoid Tumours (5th ed.)
This page is under construction |
editHAEM5 Conversion NotesThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:T-cell Large Granular Lymphocytic Leukemia.
(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples). Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)
Primary Author(s)*
- Michelle Don, MD, MS
Cancer Category / Type
Put your text here
Cancer Sub-Classification / Subtype
- T-cell Large Granular Lymphocytic Leukemia (T-LGLL leukemia)
Definition / Description of Disease
- Increased peripheral blood large granular lymphocytes (LGLs) for >6 months without a identifiable cause
- Chronic and often indolent T-cell proliferation
editUnassigned ReferencesThe following referenees were placed in the header. Please place them into the appropriate locations in the text.
Synonyms / Terminology
- T-cell large granular lymphocytic leukemia
Epidemiology / Prevalence
- 2-3% of mature small lymphocytic leukemias
- Male:Female ~ 1:1
- Most commonly occurs between ages 45-75 years old
editUnassigned ReferencesThe following referenees were placed in the header. Please place them into the appropriate locations in the text.
Clinical Features
Put your text here and fill in the table (Instruction: Can include references in the table)
Signs and Symptoms | EXAMPLE Asymptomatic (incidental finding on complete blood counts)
EXAMPLE B-symptoms (weight loss, fever, night sweats) EXAMPLE Fatigue EXAMPLE Lymphadenopathy (uncommon) |
Laboratory Findings | EXAMPLE Cytopenias
EXAMPLE Lymphocytosis (low level) |
editv4:Clinical FeaturesThe content below was from the old template. Please incorporate above.
- Severe neutropenia
- Lymphocyte count usually 2-20x109/L
- Has been reported to occur with:
- Severe red cell hypoplasia
- Rheumatoid arthritis
- Low grade B-cell malignancies
editUnassigned ReferencesThe following referenees were placed in the header. Please place them into the appropriate locations in the text.
Sites of Involvement
- Peripheral blood and bone marrow
- Spleen - infiltration and expansion of red pulp
- Liver
- Skin (rare)
- Lymph nodes (exceptional)
editUnassigned ReferencesThe following referenees were placed in the header. Please place them into the appropriate locations in the text.
Morphologic Features
Large granular lymphocytes
- Moderate to abundant cytoplasm
- Fine or course azurophilic granules
Immunophenotype
Finding | Marker |
---|---|
Positive | CD8, CD2, CD3, CD16, CD57, αβ (alpha-beta) TCR
Cytotoxic effector proteins: TIA1, Granzyme B, Granzyme M |
Negative | CD4, CD5, CD7 |
Please note: |
editUnassigned ReferencesThe following referenees were placed in the header. Please place them into the appropriate locations in the text.
Chromosomal Rearrangements (Gene Fusions)
Put your text here and fill in the table
Chromosomal Rearrangement | Genes in Fusion (5’ or 3’ Segments) | Pathogenic Derivative | Prevalence | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
EXAMPLE t(9;22)(q34;q11.2) | EXAMPLE 3'ABL1 / 5'BCR | EXAMPLE der(22) | EXAMPLE 20% (COSMIC)
EXAMPLE 30% (add reference) |
Yes | No | Yes | EXAMPLE
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). |
editv4:Chromosomal Rearrangements (Gene Fusions)The content below was from the old template. Please incorporate above.
- No known chromosomal rearrangements
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).Please incorporate this section into the relevant tables found in:
- Chromosomal Rearrangements (Gene Fusions)
- Individual Region Genomic Gain/Loss/LOH
- Characteristic Chromosomal Patterns
- Gene Mutations (SNV/INDEL)
- There are no FDA approved targeted therapies for T-LGL
- STAT3 mutations can be used to follow-up, in response to treatment[4]
- Take caution as STAT mutations are not specific to T-LGL and can be seen in other T-cell lymphomas
- STAT3 mutation, Y640F, has a predicted response to initial therapy with methotrexate[5]
- Bortezomib is considered due to NF-κB constitutive activity in T-LGL leukemia[6]
Individual Region Genomic Gain / Loss / LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.)
Chr # | Gain / Loss / Amp / LOH | Minimal Region Genomic Coordinates [Genome Build] | Minimal Region Cytoband | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
EXAMPLE
7 |
EXAMPLE Loss | EXAMPLE
chr7:1- 159,335,973 [hg38] |
EXAMPLE
chr7 |
Yes | Yes | No | EXAMPLE
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference). |
EXAMPLE
8 |
EXAMPLE Gain | EXAMPLE
chr8:1-145,138,636 [hg38] |
EXAMPLE
chr8 |
No | No | No | EXAMPLE
Common recurrent secondary finding for t(8;21) (add reference). |
editv4:Genomic Gain/Loss/LOHThe content below was from the old template. Please incorporate above.
- No known recurrent copy number gain/loss/LOH, chromosomal abnormalities have been reported in few cases[7]
Characteristic Chromosomal Patterns
Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis)
Chromosomal Pattern | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|
EXAMPLE
Co-deletion of 1p and 18q |
Yes | No | No | EXAMPLE:
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). |
editv4:Characteristic Chromosomal Aberrations / PatternsThe content below was from the old template. Please incorporate above.
Gene Mutations (SNV / INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.)
Gene; Genetic Alteration | Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) | Prevalence (COSMIC / TCGA / Other) | Concomitant Mutations | Mutually Exclusive Mutations | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|---|
EXAMPLE: TP53; Variable LOF mutations
EXAMPLE: EGFR; Exon 20 mutations EXAMPLE: BRAF; Activating mutations |
EXAMPLE: TSG | EXAMPLE: 20% (COSMIC)
EXAMPLE: 30% (add Reference) |
EXAMPLE: IDH1 R123H | EXAMPLE: EGFR amplification | EXAMPLE: Excludes hairy cell leukemia (HCL) (add reference).
|
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
editv4:Gene Mutations (SNV/INDEL)The content below was from the old template. Please incorporate above.Somatic activating STAT3 and STAT5b mutations are the most common SNVs in T-LGL.
Gene* Mutation Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) Prevalence Additional information STAT3
- Src-like homologue 2 (SH2) domain of STAT3
- Most frequently affecting codons Y640 or D661[1]
GOF 40-70%[11]
- 17% of patients with STAT3 mutations, had multiple mutations in the STAT3 gene, solely in cytotoxic CD8+ or NK cells.[4]
- Take caution as STAT3 mutation can also be seen in other T-cell lymphomas including hepatosplenic T-cell lymphoma[12]
STAT5B GOF 2%[13]
- Take caution as STAT5B mutations can also be seen in other T-cell lymphomas including hepatosplenic T-cell lymphoma[12]
- N642H mutation is associated with CD3+/CD56+ phenotype[14]
TNFAIP3
- Somatic mutations[9]
- Y353X
- K354K
- Q741Q
- E630X
- A717T
- F127C
LOF (Nonsense mutations)[9] Identified in 3/39 patients[9] *More comprehensive listing of specific mutations in these genes can be found elsewhere (COSMIC, cBioPortal)
Epigenomic Alterations
- Epigenetic inactivation of JAK/STAT pathway inhibitors
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Can include references in the table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
editv4:Genes and Main Pathways InvolvedThe content below was from the old template. Please incorporate above.
- JAK/STAT[7]
- Constitutive activation
- NK-κB[7]
- Activation of this pathway
- Preventing apoptosis
- T-LGL's express high levels of FAS and FASL[7]
- Resistant to FAS mediated apoptosis
- Leading to activation of prosurvival pathways
- Postulated to lead to neutropenia seen in these patients.
- RAS/RAF1/MEK1/ERK [7]
- Overactive RAS
- Constitutive activation of RAS and ERK
- PI3K/AKT[7]
- Dysregulation
- Contributing to apoptosis inhibition
Genetic Diagnostic Testing Methods
- Morphologic assessment, flow cytometry and immunohistochemistry
- PCR to assess for clonality, T-cell receptor (TCR) gene rearrangements
- TCR gamma (TCRG) gene is rearranged in all cases, regardless of the type of TCR expressed, thus proves clonality[1]
- Can be helpful in differentiating a reactive lymphocytosis from clonal T-LGL's
- NK LGL proliferations do not express TCR, making assessment of clonality difficult[7]
- Expression of activating isoforms of killer immunoglobulin-like receptors (KIR) can be used as a surrogate marker of clonality in NK LGL[7]
- TCR gamma (TCRG) gene is rearranged in all cases, regardless of the type of TCR expressed, thus proves clonality[1]
Familial Forms
- No known familiar forms as of yet.
Additional Information
- N/A
Links
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Chan W.C., et al., (2017). T-cell large granular lymphocytic leukemia, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p 348-350.
- ↑ Lima M, Almeida J, dos Anjos Teixeira M, del Carmen Alguero M, Santos AH, Balanzategui A, Queirós ML, Bárcena P, Izarra A, Fonseca S, Bueno C. TCRαβ+/CD4+ large granular lymphocytosis: a new clonal T-cell lymphoproliferative disorder. The American journal of pathology. 2003 Aug 1;163(2):763-71.
- ↑ Chen YH, Chadburn A, Evens AM, Winter JN, Gordon LI, Chenn A, Goolsby C, Peterson L. Clinical, morphologic, immunophenotypic, and molecular cytogenetic assessment of CD4–/CD8–γδ T-cell large granular lymphocytic leukemia. American journal of clinical pathology. 2011 Aug 1;136(2):289-99.
- ↑ 4.0 4.1 Rajala HL, Olson T, Clemente MJ, Lagström S, Ellonen P, Lundan T, Hamm DE, Zaman SA, Marti JM, Andersson EI, Jerez A. The analysis of clonal diversity and therapy responses using STAT3 mutations as a molecular marker in large granular lymphocytic leukemia. haematologica. 2015 Jan 1;100(1):91-9.
- ↑ Loughran TP, Zickl L, Olson TL, Wang V, Zhang D, Rajala HL, Hasanali Z, Bennett JM, Lazarus HM, Litzow MR, Evens AM. Immunosuppressive therapy of LGL leukemia: prospective multicenter phase II study by the Eastern Cooperative Oncology Group (E5998). Leukemia. 2015 Apr;29(4):886-94.
- ↑ Mishra A, Liu S, Sams GH, Curphey DP, Santhanam R, Rush LJ, Schaefer D, Falkenberg LG, Sullivan L, Jaroncyk L, Yang X. Aberrant overexpression of IL-15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer cell. 2012 Nov 13;22(5):645-55.
- ↑ 7.0 7.1 7.2 7.3 7.4 7.5 7.6 7.7 Lamy T, Moignet A, Loughran TP. LGL leukemia: from pathogenesis to treatment. Blood. 2017 Mar 2;129(9):1082-94.
- ↑ 8.0 8.1 Zhang L, Ramchandren R, Papenhausen P, Loughran TP, Sokol L. Transformed aggressive γδ‐variant T‐cell large granular lymphocytic leukemia with acquired copy neutral loss of heterozygosity at 17q11. 2q25. 3 and additional aberrations. European journal of haematology. 2014 Sep;93(3):260-4.
- ↑ 9.0 9.1 9.2 9.3 9.4 9.5 Johansson P, Bergmann A, Rahmann S, Wohlers I, Scholtysik R, Przekopowitz M, Seifert M, Tschurtschenthaler G, Webersinke G, Jäger U, Siebert R. Recurrent alterations of TNFAIP 3 (A 20) in T‐cell large granular lymphocytic leukemia. International journal of cancer. 2016 Jan 1;138(1):121-4.
- ↑ 10.0 10.1 Jerez A, Clemente MJ, Makishima H, Koskela H, LeBlanc F, Peng Ng K, Olson T, Przychodzen B, Afable M, Gomez-Segui I, Guinta K. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T-cell large granular lymphocyte leukemia. Blood, The Journal of the American Society of Hematology. 2012 Oct 11;120(15):3048-57.
- ↑ 11.0 11.1 11.2 Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson EI, Lagström S, Clemente MJ, Olson T, Jalkanen SE, Majumder MM. Somatic STAT3 mutations in large granular lymphocytic leukemia. New England Journal of Medicine. 2012 May 17;366(20):1905-13.
- ↑ 12.0 12.1 Yabe M, Medeiros LJ, Wang SA, Tang G, Bueso-Ramos CE, Jorgensen JL, Bhagat G, Chen W, Li S, Young KH, Miranda RN. Distinguishing between hepatosplenic T-cell lymphoma and γδ T-cell large granular lymphocytic leukemia. The American journal of surgical pathology. 2017 Jan 1;41(1):82-93.
- ↑ 13.0 13.1 Rajala HL, Eldfors S, Kuusanmäki H, Van Adrichem AJ, Olson T, Lagström S, Andersson EI, Jerez A, Clemente MJ, Yan Y, Zhang D. Discovery of somatic STAT5b mutations in large granular lymphocytic leukemia. Blood, The Journal of the American Society of Hematology. 2013 May 30;121(22):4541-50.
- ↑ 14.0 14.1 Rajala HL, Porkka K, Maciejewski JP, Loughran Jr TP, Mustjoki S. Uncovering the pathogenesis of large granular lymphocytic leukemia—novel STAT3 and STAT5b mutations. Annals of Medicine. 2014 May 1;46(3):114-22.
- ↑ Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP. Network model of survival signaling in large granular lymphocyte leukemia. Proceedings of the National Academy of Sciences. 2008 Oct 21;105(42):16308-13.
- ↑ 16.0 16.1 16.2 Teramo, Antonella; et al. (2013-05-09). "Intrinsic and extrinsic mechanisms contribute to maintain the JAK/STAT pathway aberrantly activated in T-type large granular lymphocyte leukemia". Blood. 121 (19): 3843–3854, S1. doi:10.1182/blood-2012-07-441378. ISSN 1528-0020. PMID 23515927.
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.
*Citation of this Page: “T-large granular lymphocytic leukaemia”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 12/13/2023, https://ccga.io/index.php/HAEM5:T-large_granular_lymphocytic_leukaemia.
Other Sections
Cancer Category