Difference between revisions of "HAEM5:T-prolymphocytic leukaemia"
[unchecked revision] | [unchecked revision] |
Line 41: | Line 41: | ||
|B symptoms (Fever, night sweats, weight loss) | |B symptoms (Fever, night sweats, weight loss) | ||
Hepatosplenomegaly (Frequently observed) | Hepatosplenomegaly (Frequently observed) | ||
+ | |||
Generalized lymphadenopathy with slightly enlarged lymph nodes (Frequently observed | Generalized lymphadenopathy with slightly enlarged lymph nodes (Frequently observed | ||
Line 57: | Line 58: | ||
|} | |} | ||
==Sites of Involvement== | ==Sites of Involvement== | ||
− | Peripheral blood, bone marrow, spleen, liver, lymph node, and sometimes skin and serosa. Extra lymphatic and extramedullary atypical manifestations including skin, muscles and intestines are particularly common in relapse. | + | Peripheral blood, bone marrow, spleen (mostly red pulp), liver, lymph node (mostly paracortical), and sometimes skin and serosa (primarily pleura). Extra lymphatic and extramedullary atypical manifestations including skin, muscles and intestines are particularly common in relapse. |
==Morphologic Features== | ==Morphologic Features== | ||
− | Blood smears in T-PLL typically reveal anemia, thrombocytopenia, and leukocytosis, with atypical lymphocytes in three morphological forms. The most common form (75% of cases) features medium-sized cells with a high nuclear-to-cytoplasmic ratio, moderately condensed chromatin, a single visible nucleolus, and slightly basophilic cytoplasm | + | Blood smears in T-PLL typically reveal anemia, thrombocytopenia, and leukocytosis, with atypical lymphocytes in three morphological forms. The most common form (75% of cases) features medium-sized cells with a high nuclear-to-cytoplasmic ratio, moderately condensed chromatin, a single visible nucleolus, and slightly basophilic cytoplasm. In 20% of cases, the cells appear as a small cell variant with densely condensed chromatin and an inconspicuous nucleolus. About 5% of cases exhibit a cerebriform variant with irregular nuclei resembling those in mycosis fungoides. Regardless of the nuclear features, a common morphological characteristic is the presence of cytoplasmic protrusions or blebs.<ref>{{Cite journal|last=Eichhorn|first=G. L.|date=1979-02|title=Aging, genetics, and the environment: potential of errors introduced into genetic information transfer by metal ions|url=https://pubmed.ncbi.nlm.nih.gov/374897|journal=Mechanisms of Ageing and Development|volume=9|issue=3-4|pages=291–301|doi=10.1016/0047-6374(79)90106-4|issn=0047-6374|pmid=374897}}</ref> Bone marrow aspirates show clusters of these neoplastic cells, with a mixed pattern of involvement including diffuse and interstitial, in trephine core biopsy. |
==Immunophenotype== | ==Immunophenotype== | ||
− | + | T-cell prolymphocytes show strong staining with alpha-naphthyl acetate esterase and acid phosphatase, presenting a distinctive dot-like pattern, but cytochemistry is not commonly used for diagnosis. | |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Finding!!Marker | !Finding!!Marker | ||
|- | |- | ||
− | |Positive (universal)|| | + | |Positive (universal)||TCL1 (highest specificity), CD2, CD3 (may be weak), CD5, CD7 (strong), TCR-α/β, S100 (30% of cases) |
|- | |- | ||
− | |Positive (subset)||CD4 (in some cases CD4+/CD8+ or CD4-/CD8+), CD52, activation markers are variable (CD25, CD38, CD43, CD26, CD27) | + | |Positive (subset)||CD4 (in some cases CD4+/CD8+ or CD4-/CD8+), CD52 (therapeutic target), activation markers are variable (CD25, CD38, CD43, CD26, CD27) |
|- | |- | ||
|Negative (universal)||TdT, CD1a, CD57, CD16 | |Negative (universal)||TdT, CD1a, CD57, CD16 | ||
Line 103: | Line 104: | ||
|} | |} | ||
==Individual Region Genomic Gain / Loss / LOH== | ==Individual Region Genomic Gain / Loss / LOH== | ||
+ | Approximately 70-80% of T-PLL karyotypes are complex, which is considered minor diagnostic criteria, and usually include 3-5 or more structural aberrations. Common cytogenetic abnormalities include those of chromosome 8, such as idic(8)(p11.2), t(8;8)(p11.2;q12), and trisomy 8q. Other frequent changes are deletions in 12p13 and 22q, gains in 8q24 (MYC), and abnormalities in chromosomes 5p, 6, and 17. | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
Line 113: | Line 115: | ||
|8 | |8 | ||
|Gain | |Gain | ||
+ | |idic(8) | ||
+ | |||
+ | t(8;8)(p11;q12) | ||
+ | |||
+ | trisomy 8q<br />8q24 (''MYC'') | ||
|idic(8)(p11.2) | |idic(8)(p11.2) | ||
Line 118: | Line 125: | ||
trisomy 8q<br />8q24 (''MYC'') | trisomy 8q<br />8q24 (''MYC'') | ||
− | |||
|Yes | |Yes | ||
|No | |No | ||
|No | |No | ||
− | |Recurrent secondary finding <ref>{{Cite journal|last= | + | |Recurrent secondary finding (70-80% of cases). Minor diagnostic criteria. <ref>{{Cite journal|last=Staber|first=Philipp B.|last2=Herling|first2=Marco|last3=Bellido|first3=Mar|last4=Jacobsen|first4=Eric D.|last5=Davids|first5=Matthew S.|last6=Kadia|first6=Tapan Mahendra|last7=Shustov|first7=Andrei|last8=Tournilhac|first8=Olivier|last9=Bachy|first9=Emmanuel|date=2019-10-03|title=Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/31292114|journal=Blood|volume=134|issue=14|pages=1132–1143|doi=10.1182/blood.2019000402|issn=1528-0020|pmc=7042666|pmid=31292114}}</ref> |
|- | |- | ||
|5 | |5 | ||
− | | | + | |Abnormality |
|5p | |5p | ||
| | | | ||
Line 131: | Line 137: | ||
| | | | ||
| | | | ||
− | |Minor diagnostic criteria | + | |Minor diagnostic criteria |
|- | |- | ||
|6 | |6 | ||
− | | | + | |Abnormality |
|6p | |6p | ||
| | | | ||
Line 149: | Line 155: | ||
|Yes | |Yes | ||
|Yes | |Yes | ||
− | |Frequent | + | |Frequent, Minor diagnostic criteria. |
|- | |- | ||
|12 | |12 | ||
Line 179: | Line 185: | ||
|- | |- | ||
|17 | |17 | ||
− | | | + | |Abnormality |
|17p, 17q | |17p, 17q | ||
| | | | ||
Line 198: | Line 204: | ||
|} | |} | ||
==Characteristic Chromosomal Patterns== | ==Characteristic Chromosomal Patterns== | ||
− | + | <br /> | |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
Line 234: | Line 240: | ||
|Biallelic inactivation (missense mutations) of the ATM gene was demonstrated in virtually all sporadic cases of T-PLL (Dr. Jaffe book) | |Biallelic inactivation (missense mutations) of the ATM gene was demonstrated in virtually all sporadic cases of T-PLL (Dr. Jaffe book) | ||
|- | |- | ||
− | |'' | + | |''FBXW10'' |
− | | | + | |TSG |
− | | | + | |72% (COSMIC) |
| | | | ||
| | | | ||
Line 244: | Line 250: | ||
| | | | ||
|- | |- | ||
− | |'' | + | |''IL2RG,'' ''JAK1, JAK3, STAT5B'' |
− | | | + | |Oncogene |
− | | | + | |8% ''JAK1'' |
− | + | ||
+ | 34% ''JAK3'' | ||
+ | |||
+ | 16% ''STAT5B'' | ||
+ | |||
+ | 2% ''IL2RG'' | ||
+ | |||
+ | (COSMIC) | ||
| | | | ||
| | | | ||
Line 253: | Line 266: | ||
| | | | ||
| | | | ||
+ | |The cumulative prevalence of these mutations in T-PLL is approximately 60%. Typically, mutations within this pathway occur in a mutually exclusive manner. (Dr jaffe book) | ||
|- | |- | ||
− | |'' | + | |''EZH2'' |
− | |TSG | + | |Oncogene, TSG |
− | | | + | |16% (COSMIC) |
| | | | ||
| | | | ||
Line 264: | Line 278: | ||
| | | | ||
|- | |- | ||
− | |'' | + | |''BCOR'' |
− | | | + | |TSG |
− | | | + | |8% (COSMIC) |
− | + | | | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
| | | | ||
| | | | ||
Line 282: | Line 287: | ||
| | | | ||
| | | | ||
− | |||
|- | |- | ||
− | |'' | + | |''CHEK2'' |
|TSG | |TSG | ||
+ | |5% (COSMIC) | ||
| | | | ||
| | | | ||
Line 292: | Line 297: | ||
| | | | ||
| | | | ||
− | |||
|- | |- | ||
− | |'' | + | |''TP53'' |
|TSG | |TSG | ||
+ | |2% (COSMIC) | ||
| | | | ||
| | | | ||
Line 301: | Line 306: | ||
| | | | ||
| | | | ||
− | | | + | |Rare |
− | |||
|}Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |}Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | ||
==Epigenomic Alterations== | ==Epigenomic Alterations== | ||
Line 329: | Line 333: | ||
|- | |- | ||
|''IL2RG'' | |''IL2RG'' | ||
− | |Cytokine signaling | + | |''JAK-STAT'' pathway, Cytokine signaling |
|Promoting lymphocyte proliferation | |Promoting lymphocyte proliferation | ||
|- | |- |
Revision as of 14:05, 15 May 2024
Haematolymphoid Tumours (5th ed.)
This page is under construction |
(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click nearby within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)
Primary Author(s)*
Parastou Tizro, MD, Celeste Eno, PHD, Sumire Kitahara, MD
WHO Classification of Disease
(Will be autogenerated; Book will include name of specific book and have a link to the online WHO site)
Structure | Disease |
---|---|
Book | |
Category | |
Family | |
Type | |
Subtype(s) |
Definition / Description of Disease
T-prolymphocytic leukemia (T-PLL) is an aggressive form of T-cell leukemia marked by the proliferation of small to medium-sized prolymphocytes exhibiting a mature post-thymic T-cell phenotype. This condition is characterized by the juxtaposition of TCL1A or MTCP1 genes to a TR locus, typically the TRA/TRD locus.
Synonyms / Terminology
T-cell chronic lymphocytic leukemia
Epidemiology / Prevalence
T-PLL is a rare disorder, comprising about 2% of all mature lymphoid leukemia cases in adults. It primarily occurs in the elderly, with a median age of 65 years (ranging from 30 to 94 years) and shows a slight male predominance with a male to female ratio of 1.33:1.
Clinical Features
The most prevalent symptom of the disease is a leukemic presentation, characterized by a rapid, exponential increase in lymphocyte counts, which exceed 100 × 10^9/L in 75% of patients. Approximately 30% of patients may initially experience an asymptomatic, slow-progressing phase, but this typically develops into an active disease state
Signs and Symptoms | B symptoms (Fever, night sweats, weight loss)
Hepatosplenomegaly (Frequently observed) Generalized lymphadenopathy with slightly enlarged lymph nodes (Frequently observed Cutaneous involvement (20%) Malignant effusions (15%) Asymptomatic and indolent phase (30% of cases) |
Laboratory Findings | Anemia and thrombocytopenia
Marked lymphocytosis > 100 × 10^9/L (75% of cases) Atypical lymphocytosis > 5 × 10^9/L |
Sites of Involvement
Peripheral blood, bone marrow, spleen (mostly red pulp), liver, lymph node (mostly paracortical), and sometimes skin and serosa (primarily pleura). Extra lymphatic and extramedullary atypical manifestations including skin, muscles and intestines are particularly common in relapse.
Morphologic Features
Blood smears in T-PLL typically reveal anemia, thrombocytopenia, and leukocytosis, with atypical lymphocytes in three morphological forms. The most common form (75% of cases) features medium-sized cells with a high nuclear-to-cytoplasmic ratio, moderately condensed chromatin, a single visible nucleolus, and slightly basophilic cytoplasm. In 20% of cases, the cells appear as a small cell variant with densely condensed chromatin and an inconspicuous nucleolus. About 5% of cases exhibit a cerebriform variant with irregular nuclei resembling those in mycosis fungoides. Regardless of the nuclear features, a common morphological characteristic is the presence of cytoplasmic protrusions or blebs.[1] Bone marrow aspirates show clusters of these neoplastic cells, with a mixed pattern of involvement including diffuse and interstitial, in trephine core biopsy.
Immunophenotype
T-cell prolymphocytes show strong staining with alpha-naphthyl acetate esterase and acid phosphatase, presenting a distinctive dot-like pattern, but cytochemistry is not commonly used for diagnosis.
Finding | Marker |
---|---|
Positive (universal) | TCL1 (highest specificity), CD2, CD3 (may be weak), CD5, CD7 (strong), TCR-α/β, S100 (30% of cases) |
Positive (subset) | CD4 (in some cases CD4+/CD8+ or CD4-/CD8+), CD52 (therapeutic target), activation markers are variable (CD25, CD38, CD43, CD26, CD27) |
Negative (universal) | TdT, CD1a, CD57, CD16 |
Negative (subset) | CD8 (in some cases CD4+/CD8+ or CD4-/CD8+) |
Chromosomal Rearrangements (Gene Fusions)
Put your text here and fill in the table (Instruction: Can include references in the table. Do not delete table.)
Chromosomal Rearrangement | Genes in Fusion (5’ or 3’ Segments) | Pathogenic Derivative | Prevalence | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
inv(14)(q11.2q32.1)
t(14;14)(q11.2;q32.1) |
TCL1A/B ,TRD | inv(14) ~60%
t(14;14) ~25% |
Yes | Yes | Yes | These genetic abnormalities serve as diagnostic markers and generally indicate an aggressive disease. This is due to their role in overexpressing oncogenes like TCL1A. | |
t(X;14)(q28;q11.2) | MTCP1, TRD | Low (5%) | Yes |
Individual Region Genomic Gain / Loss / LOH
Approximately 70-80% of T-PLL karyotypes are complex, which is considered minor diagnostic criteria, and usually include 3-5 or more structural aberrations. Common cytogenetic abnormalities include those of chromosome 8, such as idic(8)(p11.2), t(8;8)(p11.2;q12), and trisomy 8q. Other frequent changes are deletions in 12p13 and 22q, gains in 8q24 (MYC), and abnormalities in chromosomes 5p, 6, and 17.
Chr # | Gain / Loss / Amp / LOH | Minimal Region Genomic Coordinates [Genome Build] | Minimal Region Cytoband | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
8 | Gain | idic(8)
t(8;8)(p11;q12) trisomy 8q |
idic(8)(p11.2)
t(8;8)(p11.2;q12) trisomy 8q |
Yes | No | No | Recurrent secondary finding (70-80% of cases). Minor diagnostic criteria. [2] |
5 | Abnormality | 5p | Yes | Minor diagnostic criteria | |||
6 | Abnormality | 6p | No | ||||
11 | Loss | 11q | ch11q21-q23.3 | Yes | Yes | Yes | Frequent, Minor diagnostic criteria. |
12 | Loss | 12p | 12p13 | Yes | Minor diagnostic criteria | ||
13 | Loss | 13q | 13q14.3 | Yes | Minor diagnostic criteria | ||
14 | Loss | 14q | In approximately (37%) | ||||
17 | Abnormality | 17p, 17q | |||||
22 | Loss | Monosomy 22
22q |
Minor diagnostic criteria |
Characteristic Chromosomal Patterns
Chromosomal Pattern | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|
inv(14)(q11q32) | Yes | EXAMPLE: No | EXAMPLE: No | EXAMPLE:
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). |
Gene Mutations (SNV / INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.)
Gene; Genetic Alteration | Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) | Prevalence (COSMIC / TCGA / Other) | Concomitant Mutations | Mutually Exclusive Mutations | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|---|
ATM | TSG | 53% (COSMIC) | ATM mutation/deletion | None specified | Yes | Yes | Biallelic inactivation (missense mutations) of the ATM gene was demonstrated in virtually all sporadic cases of T-PLL (Dr. Jaffe book) | |
FBXW10 | TSG | 72% (COSMIC) | ||||||
IL2RG, JAK1, JAK3, STAT5B | Oncogene | 8% JAK1
34% JAK3 16% STAT5B 2% IL2RG (COSMIC) |
The cumulative prevalence of these mutations in T-PLL is approximately 60%. Typically, mutations within this pathway occur in a mutually exclusive manner. (Dr jaffe book) | |||||
EZH2 | Oncogene, TSG | 16% (COSMIC) | ||||||
BCOR | TSG | 8% (COSMIC) | ||||||
CHEK2 | TSG | 5% (COSMIC) | ||||||
TP53 | TSG | 2% (COSMIC) | Rare |
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
Epigenomic Alterations
Put your text here
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Can include references in the table. Do not delete table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
TCL1A/B rearrangement | AKT signaling and TCR signal amplification pathways | Increased cell survival and proliferation |
MTCP1 | AKT signaling and TCR signal amplification pathways | Increased cell survival and proliferation |
ATM, CHEK2 | DNA damage repair pathway | Genomic instability |
JAK1, JAK3, STAT5B | JAK-STAT pathway | Unchecked cell growth and survival |
IL2RG | JAK-STAT pathway, Cytokine signaling | Promoting lymphocyte proliferation |
EZH2 | Transcription regulator | Altering the epigenetic landscape |
Genetic Diagnostic Testing Methods
Cytogenetics (FISH, CpG-stimulated Karyotype, SNP microarray), PCR for TRB/TRG and Next-Generation Sequencing (NGS). The genetic diagnostic process involves detecting clonal rearrangements of the TR gene and rearrangements of the TCL1 gene at the TRB or TRG loci.
Familial Forms
There is no noticeable familial clustering. However, a subset of cases may develop in the context of ataxia-telangiectasia (AT), which is characterized by germline mutations in the ATM gene. Here there is a combined heterozygosity in the form of biallelic inactivating mutations of the ATM tumor suppressor gene.[3] Penetrance of the tumor phenotype is about 10% to 15% by early adulthood.[4] It represents nearly 3% of all malignancies in patients with ataxia-telangiectasia.[5]
Additional Information
In T-PLL, the rapid growth of the disease necessitates immediate initiation of treatment. The most effective first-line treatment is alemtuzumab, an anti-CD52 antibody with remission rates over 80%. However, these remissions usually last only 1-2 years. To potentially extend remission, eligible patients are advised to undergo allogeneic blood stem cell transplantation (allo-SCT) during their first complete remission, which can lead to longer remission durations of over 4-5 years for 15-30% of patients. Consequently, the prognosis for T-PLL remains poor, with median overall survival times under two years and five-year survival rates below 5%. Ongoing research is exploring molecularly targeted drugs and signaling pathway inhibitors, for routine clinical use in treating T-PLL.
Links
(use the "Link" icon that looks like two overlapping circles at the top of the page) (Instructions: Highlight text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "http://www." portion.)
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)
- ↑ Eichhorn, G. L. (1979-02). "Aging, genetics, and the environment: potential of errors introduced into genetic information transfer by metal ions". Mechanisms of Ageing and Development. 9 (3–4): 291–301. doi:10.1016/0047-6374(79)90106-4. ISSN 0047-6374. PMID 374897. Check date values in:
|date=
(help) - ↑ Staber, Philipp B.; et al. (2019-10-03). "Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia". Blood. 134 (14): 1132–1143. doi:10.1182/blood.2019000402. ISSN 1528-0020. PMC 7042666 Check
|pmc=
value (help). PMID 31292114. - ↑ Suarez, Felipe; et al. (2015-01-10). "Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 33 (2): 202–208. doi:10.1200/JCO.2014.56.5101. ISSN 1527-7755. PMID 25488969.
- ↑ Taylor, A. M.; et al. (1996-01-15). "Leukemia and lymphoma in ataxia telangiectasia". Blood. 87 (2): 423–438. ISSN 0006-4971. PMID 8555463.
- ↑ Li, Geling; et al. (2017-12-26). "T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib)". Blood Advances. 1 (27): 2724–2728. doi:10.1182/bloodadvances.2017010470. ISSN 2473-9529. PMC 5745136. PMID 29296924.
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.