Difference between revisions of "HAEM5:Acute myeloid leukaemia with maturation"
[unchecked revision] | [unchecked revision] |
Bailey.Glen (talk | contribs) |
Bailey.Glen (talk | contribs) |
||
Line 4: | Line 4: | ||
{{Under Construction}} | {{Under Construction}} | ||
− | <blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|This page was converted to the new template on 2023-12- | + | <blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Acute Myeloid Leukemia (AML) with Maturation]]. |
}}</blockquote> | }}</blockquote> | ||
==Primary Author(s)*== | ==Primary Author(s)*== |
Revision as of 16:19, 7 December 2023
Haematolymphoid Tumours (5th ed.)
This page is under construction |
editHAEM5 Conversion NotesThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Acute Myeloid Leukemia (AML) with Maturation.
Primary Author(s)*
Jennelle C. Hodge, PhD, FACMG
Cancer Category / Type
Cancer Sub-Classification / Subtype
Acute myeloid leukemia (AML) with maturation
Definition / Description of Disease
This is a distinct entity in the World Health Organization (WHO) classification system within the section of HAEM4:Acute Myeloid Leukemia (AML), Not Otherwise Specified[1]. This entity does not meet the criteria for inclusion in any of the other AML groups (i.e. AML with Recurrent Genetic Abnormalities, AML with Myelodysplasia-Related Changes, or Therapy-Related Myeloid Neoplasms). There is currently no known recurrent chromosomal abnormality associated with this entity[1].
Synonyms / Terminology
American-British (FAB) classification M2[1].
Epidemiology / Prevalence
Accounts for 10% of AML, occurring in all ages including 20% in young patients (<25 years old) and 40% in older patients (≥60 years old)[1].
Clinical Features
Put your text here and fill in the table (Instruction: Can include references in the table)
Signs and Symptoms | EXAMPLE Asymptomatic (incidental finding on complete blood counts)
EXAMPLE B-symptoms (weight loss, fever, night sweats) EXAMPLE Fatigue EXAMPLE Lymphadenopathy (uncommon) |
Laboratory Findings | EXAMPLE Cytopenias
EXAMPLE Lymphocytosis (low level) |
editv4:Clinical FeaturesThe content below was from the old template. Please incorporate above.Usually presents with symptoms of bone marrow failure, including anemia, thrombocytopenia and neutropenia. There is also variability in the white blood cell and blast counts[1].
Sites of Involvement
Bone marrow, Blood
Morphologic Features
This AML subtype is characterized by the presence of ≥20% blasts in the bone marrow or blood combined with evidence of maturation in the bone marrow; specifically, ≥10% maturing cells of granulocytic lineage and <20% cells of monocyte lineage[1]. The blasts may or may not have azurophilic granulation but Auer rods and hypercullularity are typically observed. Bone marrow cell constitution includes ≥10% promyelocytes, myelocytes and mature nuetrophils, as well as elevated eosinophil precursors which lack the cytological or cytochemical abnormalities characteristic of the abnormal eosinophils in HAEM5:Acute myeloid leukaemia with CBFB::MYH11 fusion. Basophils and mast calls are sometimes increased, and variable dysplasia occurs but ≤50% of cells in two lineages show dysplasia.
Immunophenotype
The characteristic immunophenotype associated with this entity is listed in the table below. The blasts express one or more of the myeloid-associated antigens, in some cases have a pattern associated with granulocytic differentiation, and typically lack monocytic markers[1].
Finding | Marker |
---|---|
Positive (universal) | Myeloid-associated antigens (CD13, CD33, CD65, CD11b, and/or CD15) |
Positive (subset) | KIT(CD117), CD34 and HLA-DR may be present in some blasts |
Negative (universal) | Monocytic markers (CD14, CD36, CD64) |
Negative (subset) | CD7 (20-30%), CD56, CD2, CD19 and CD4 are uncommon (~10%; may be found only in immature blasts) |
Chromosomal Rearrangements (Gene Fusions)
Put your text here and fill in the table
Chromosomal Rearrangement | Genes in Fusion (5’ or 3’ Segments) | Pathogenic Derivative | Prevalence | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
EXAMPLE t(9;22)(q34;q11.2) | EXAMPLE 3'ABL1 / 5'BCR | EXAMPLE der(22) | EXAMPLE 20% (COSMIC)
EXAMPLE 30% (add reference) |
Yes | No | Yes | EXAMPLE
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). |
editv4:Chromosomal Rearrangements (Gene Fusions)The content below was from the old template. Please incorporate above.There is currently no known recurrent chromosomal abnormality associated with this entity.
Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence EXAMPLE t(9;22)(q34;q11.2) EXAMPLE 3'ABL1 / 5'BCR EXAMPLE der(22) EXAMPLE 5% EXAMPLE t(8;21)(q22;q22) EXAMPLE 5'RUNX1 / 3'RUNXT1 EXAMPLE der(8) EXAMPLE 5%
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).Please incorporate this section into the relevant tables found in:
- Chromosomal Rearrangements (Gene Fusions)
- Individual Region Genomic Gain/Loss/LOH
- Characteristic Chromosomal Patterns
- Gene Mutations (SNV/INDEL)
The differential diagnosis includes 1) MDS with excess blasts in cases with a low blast percentage, 2) AML without Maturation in cases with a high blast percentage, and 3) HAEM5:Acute myelomonocytic leukaemia in cases with increased monocytes. Of note, Acute Myeloid Leukemia (AML) with t(8;21)(q22;q22.1);RUNX1-RUNX1T1 typically has overlapping histologic features as AML with Maturation, but the former should be classified according to its genetic abnormality (i.e. as a subcategory of the entity HAEM4:Acute Myeloid Leukemia (AML) with Recurrent Genetic Abnormalities).
Individual Region Genomic Gain / Loss / LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.)
Chr # | Gain / Loss / Amp / LOH | Minimal Region Genomic Coordinates [Genome Build] | Minimal Region Cytoband | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
EXAMPLE
7 |
EXAMPLE Loss | EXAMPLE
chr7:1- 159,335,973 [hg38] |
EXAMPLE
chr7 |
Yes | Yes | No | EXAMPLE
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference). |
EXAMPLE
8 |
EXAMPLE Gain | EXAMPLE
chr8:1-145,138,636 [hg38] |
EXAMPLE
chr8 |
No | No | No | EXAMPLE
Common recurrent secondary finding for t(8;21) (add reference). |
editv4:Genomic Gain/Loss/LOHThe content below was from the old template. Please incorporate above.There is currently no known recurrent chromosomal abnormality associated with this entity.
Chromosome Number Gain/Loss/Amp/LOH Region EXAMPLE 8 EXAMPLE Gain EXAMPLE chr8:0-1000000 EXAMPLE 7 EXAMPLE Loss EXAMPLE chr7:0-1000000
Characteristic Chromosomal Patterns
Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis)
Chromosomal Pattern | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|
EXAMPLE
Co-deletion of 1p and 18q |
Yes | No | No | EXAMPLE:
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). |
editv4:Characteristic Chromosomal Aberrations / PatternsThe content below was from the old template. Please incorporate above.There is currently no known recurrent chromosomal abnormality associated with this entity.
Gene Mutations (SNV / INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.)
Gene; Genetic Alteration | Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) | Prevalence (COSMIC / TCGA / Other) | Concomitant Mutations | Mutually Exclusive Mutations | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|---|
EXAMPLE: TP53; Variable LOF mutations
EXAMPLE: EGFR; Exon 20 mutations EXAMPLE: BRAF; Activating mutations |
EXAMPLE: TSG | EXAMPLE: 20% (COSMIC)
EXAMPLE: 30% (add Reference) |
EXAMPLE: IDH1 R123H | EXAMPLE: EGFR amplification | EXAMPLE: Excludes hairy cell leukemia (HCL) (add reference).
|
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
editv4:Gene Mutations (SNV/INDEL)The content below was from the old template. Please incorporate above.Currently there is currently no known recurrent gene mutations associated with this entity.
Gene Mutation Oncogene/Tumor Suppressor/Other Presumed Mechanism (LOF/GOF/Other; Driver/Passenger) Prevalence (COSMIC/TCGA/Other) EXAMPLE TP53 EXAMPLE R273H EXAMPLE Tumor Suppressor EXAMPLE LOF EXAMPLE 20% Other Mutations
Type Gene/Region/Other Concomitant Mutations EXAMPLE IDH1 R123H Secondary Mutations EXAMPLE Trisomy 7 Mutually Exclusive EXAMPLE EGFR Amplification
Epigenomic Alterations
Not applicable
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Can include references in the table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
editv4:Genes and Main Pathways InvolvedThe content below was from the old template. Please incorporate above.Unknown
Genetic Diagnostic Testing Methods
Histology and immunophenotype
Familial Forms
No familial forms currently known.
Additional Information
Put your text here
Links
Put your links here
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p158-159.
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome. *Citation of this Page: “Acute myeloid leukaemia with maturation”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 12/7/2023, https://ccga.io/index.php/HAEM5:Acute_myeloid_leukaemia_with_maturation.