Difference between revisions of "CNS5:Oligodendroglioma, IDH-mutant and 1p/19q-codeleted"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][checked revision]
Line 146: Line 146:
 
|No
 
|No
 
|No
 
|No
|1p/19q codeletion is the defining mutation of oligodendrogliomas  and is required for diagnosis. Prognosis is dependent on histomorphologic grading<ref name=":6">{{Cite journal|last=Griffin|first=Constance A.|last2=Burger|first2=Peter|last3=Morsberger|first3=Laura|last4=Yonescu|first4=Raluca|last5=Swierczynski|first5=Sharon|last6=Weingart|first6=Jon D.|last7=Murphy|first7=Kathleen M.|date=2006-10|title=Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss|url=https://pubmed.ncbi.nlm.nih.gov/17021403|journal=Journal of Neuropathology and Experimental Neurology|volume=65|issue=10|pages=988–994|doi=10.1097/01.jnen.0000235122.98052.8f|issn=0022-3069|pmid=17021403}}</ref> <ref name=":7">{{Cite journal|last=Jenkins|first=Robert B.|last2=Blair|first2=Hilary|last3=Ballman|first3=Karla V.|last4=Giannini|first4=Caterina|last5=Arusell|first5=Robert M.|last6=Law|first6=Mark|last7=Flynn|first7=Heather|last8=Passe|first8=Sandra|last9=Felten|first9=Sara|date=2006-10-15|title=A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma|url=https://pubmed.ncbi.nlm.nih.gov/17047046|journal=Cancer Research|volume=66|issue=20|pages=9852–9861|doi=10.1158/0008-5472.CAN-06-1796|issn=0008-5472|pmid=17047046}}</ref>
+
|1p/19q codeletion is the defining mutation of oligodendrogliomas  and is required for diagnosis. Prognosis is dependent on histomorphologic grading<ref name=":6">{{Cite journal|last=Griffin|first=Constance A.|last2=Burger|first2=Peter|last3=Morsberger|first3=Laura|last4=Yonescu|first4=Raluca|last5=Swierczynski|first5=Sharon|last6=Weingart|first6=Jon D.|last7=Murphy|first7=Kathleen M.|date=2006-10|title=Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss|url=https://pubmed.ncbi.nlm.nih.gov/17021403|journal=Journal of Neuropathology and Experimental Neurology|volume=65|issue=10|pages=988–994|doi=10.1097/01.jnen.0000235122.98052.8f|issn=0022-3069|pmid=17021403}}</ref> <ref name=":7">{{Cite journal|last=Jenkins|first=Robert B.|last2=Blair|first2=Hilary|last3=Ballman|first3=Karla V.|last4=Giannini|first4=Caterina|last5=Arusell|first5=Robert M.|last6=Law|first6=Mark|last7=Flynn|first7=Heather|last8=Passe|first8=Sandra|last9=Felten|first9=Sara|date=2006-10-15|title=A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma|url=https://pubmed.ncbi.nlm.nih.gov/17047046|journal=Cancer Research|volume=66|issue=20|pages=9852–9861|doi=10.1158/0008-5472.CAN-06-1796|issn=0008-5472|pmid=17047046}}</ref>
 
|}
 
|}
 
 

Revision as of 08:23, 13 July 2023

Primary Author(s)*

Riley Lochner MD, MS, Neuropathology Fellow Houston Methodist/Texas Children’s/MD Anderson Cancer Center

Shashirekha Shetty, PhD, Director, Cytogenetics Laboratory, Center for Human Genetics Laboratory, University Hospitals

Cancer Category/Type

Central nervous system – Diffuse gliomas

Cancer Sub-Classification / Subtype

Oligodendroglioma, IDH-mutant and 1p/19q-codeleted

Definition / Description of Disease

A molecularly defined diffusely infiltrating glioma with IDH1 or IDH2 mutation and codeletion of chromosome arms 1p and 19q[1] .

Oligodendrogliomas are graded morphologically as either CNS WHO grade 2 or CNS WHO grade 3.

In rare cases where molecular studies are unable to be completed or have failed, tumors can be histologically diagnosed as Oligodendroglioma, NOS (not otherwise specified).

Synonyms / Terminology

Anaplastic oligodendroglioma (historical; now known as oligodendroglioma, IDH-mutant and 1p/19q-codeleted, CNS WHO grade 3).

Oligoastrocytoma (discouraged; oligodendroglioma and astrocytoma are molecularly distinct entities. The diagnosis is reserved for rare cases where a dual genotype is identified, or where molecular testing could not be completed).

Epidemiology / Prevalence

-         Epidemiological statistics should be interpreted with caution as oligodendroglioma is now molecularly defined

  •   A subset of tumor historically diagnosed as oligodendroglioma on morphological grounds may therefore not meet current definition

-         Oligodendrogliomas occur primarily in adults (median age 43 years for CNS WHO grade 2 and 50 years for CNS WHO grade 3)[2]

  •   Slight male preponderance (M:F = 1.2:1[2])

-         Low incidence worldwide

  •   Incidence is changing over time due to refined molecular definition
    •   Incidence rate (cases per 100,000 person-years) for histologically defined oligodendroglioma – 0.10% (Republic of Korea; [3]), 0.50 (France [4]), 0.23 (USA 31675094[2]
    • Incidence rate for histologically defined CNS WHO Grade 3 oligodendroglioma – 0.06% (Republic of Korea[3]), 0.39 (France [4]), 0.11 (USA[2])
  •   CNS WHO grade 2 oligodendrogliomas account for 0.9% of primary brain tumors in US (PMID: 34608945)[2]
  •   CNS WHO grade 3 oligodendrogliomas account of primary brain tumors in the US(PMID: 34608945)[2]

Clinical Features

-         Oligodendrogliomas are most often low-grade, slow growing tumors

  •   Tumors are frequently asymptomatic and are increasingly found incidentally on imaging for other indications[5]

-         Most commonly present with seizures[6]

-         Can present with focal neurologic deficits or cognitive changes secondary to increased cranial pressure, especially in the high grade setting[6]

Signs and Symptoms Seizures[6]

Headache

Signs of increased intracranial pressure

-         Focal neurologic deficits

-         Cognitive changes

Asymptomatic

-         Increasingly an incidental finding on neuroimaging (PMID: 29186201)

Laboratory Findings Not applicable

Sites of Involvement

-         Approximately 60% of oligodendrogliomas occur within the frontal lobes with[1][2]

  •   14-16% in the temporal lobe
  •   10-15% in the parietal lobe
  •   1-6% in the occipital lobe
  •   Less commonly basal ganglia / cerebellum brainstem

-         Leptomeningeal spread and gliomatosis cerebri pattern can rarely occur[7] [8]

-         Rare spinal lesions have been reported but lack genotyping to confirm true oligodendroglioma[9] [10]

-         Extracranial metastasis exceedingly rare (CNS WHO grade 3)[11] [12] [13]

Morphologic Features

-         Classically consist of cells with round, monomorphous nuclei with stippled chromatin and perinuclear halos (artifactual fried-egg appearance)

-         Intervening delicate “chicken wire” vasculature

-         Can contain GFAP-positive minigemistocytes

-         Often contain microcalcifications, especially in low-grade tumors[1]

Immunophenotype


Finding Marker
Positive (universal) Retained nuclear ATRX[14], OLIG2[15], S100[16], MAP2[17], SOX10[18]
Positive (subset) Most positive for IDH1 p.R132H mutation (smaller subset lacking staining have non-canonical IDH mutation, <10%)[19]

Synaptophysin (cytoplasmic dot-like pattern[20])

Negative (universal) Lack diffuse p53[14]
Negative (subset) N/A

Chromosomal Rearrangements (Gene Fusions)

-         Oligodendrogliomas are defined by a t(1;19)(q10;p10) rearrangement that results in 1p/19q whole-arm codeletion

  •   This alteration is now required to make the diagnosis of oligodendroglioma
Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
t(1;19)(p10;q10) der[t(1;19)(q10;p10) 100% Yes No No 1p/19q codeletion is the defining mutation of oligodendrogliomas and is required for diagnosis. Prognosis is dependent on histomorphologic grading[21] [22]

Individual Region Genomic Gain/Loss/LOH

Put your text here and fill in the table

Chr # Gain / Loss / Amp / LOH Minimal Region Genomic Coordinates [Genome Build] Minimal Region Cytoband Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
9 Loss chr9:21082471-23839529 [hg38]


9p21.3 No Yes No Loss CDKN2A gene locus associated with shorter survival of grade 3[23] [24]

Characteristic Chromosomal Patterns

Put your text here

Chromosomal Pattern Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
Co-deletion of 1p and 19q Yes No No See chromosomal rearrangements table - this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma[21] [22] [25]

Gene Mutations (SNV/INDEL)

Put your text here and fill in the table

Gene; Genetic Alteration Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) Prevalence (COSMIC / TCGA / Other) Concomitant Mutations Mutually Exclusive Mutations Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
IDH1 p.R132H [26] Oncogene (Intrinsically TSG, but is oncogenic in activity) [27] 90%[28] [29] N/A Yes Yes No IDH1 codon 132 mutation required for diagnosis; other most frequent mutation hotspot is IDH2 codon 172
TERT promoter [30] [31] [32] Oncogene 97%[33] N/A Yes Yes, favorable[34] No Teenagers lack TERT promoter mutations[35]
CIC TSG 24% CNS WHO grade 2;

50% CNS WHO grade 3

70% [29] [26]

N/A No Yes No Recurrent missense mutations in HMG-box DNA-binding domain (exon 5) and C1 motif (exon 20) unique to oligodendro-glioma[36]. Shorter time to recurrence with concomintant FUBP1 mut.[37]
FUBP1[38] [39] Both TSG and oncogene [40] 16% CNS WHO grade 2

22% grade 3

20-30%[39]

N/A No Yes No Shorter time to recurrence with concomitant CIC mut.[37]
NOTCH1 [41] TSG 15%[29] N/A No Yes No Shorter survival and worse histology [42] [43]
PIK3CA [44] [45] Oncogene 10%[46] N/A No No Possibly in future[46]
TCF12 TSG 7.5% of CNS WHO grade 3[47]


No Yes No Found recurrently in CNS WHO grade 3 tumors[47]

Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

-         IDH-mutant, 1p/19q-codeleted oligodendrogliomas have hypermethylation of multiple CpG islands (PMID: 20399149)

  •   This corresponds to a distinct glioma CpG island methylator phenotype (G-CIMP)
    •   More prevalent in lower grade gliomas
    • Tightly associated with IDH1/2 mutations

Genes and Main Pathways Involved

Put your text here and fill in the table

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
IDH1/2; activating mutation Pathologic upregulation of 2-hydroxyglutarate leading to increased MAPK signaling Increased cell growth and proliferation[27]
TERT promoter; activating mutation Generates de novo ETS transcription factor binding sites upregulating expression Telomere stabilization, cell proliferation and immortalization[30][31] [32]
CIC; inactivating mutation Histone deacetylation upregulates MAPK signaling Increased cell growth and proliferation[48]
FUBP1; activating mutation FUBP1 deficiency alters cells cycle progression, especially in S phase by downregulating cyclin A Increased survival advantage to metabolic stress and chemotherapeutic drugs[38]
NOTCH1; inactivating mutation Affects epidermal growth factor-like domain leading to protein loss of function Induces accelerated cell proliferation[42]

Genetic Diagnostic Testing Methods

-         1p/19q co-deletion

  •   FISH
  •   Multiplex PCR
  •   Chromosomal microarray
  •   Next Generation Sequencing

Familial Forms

-         Germline mutations in POT1 have been associated with familial oligodendroglioma[49]

Links

IDH1

IDH2

References

  1. 1.0 1.1 1.2 WHO Classification of Tumours Editorial Board. Central nervous system tumours. Lyon (France): International Agency for Research on Cancer; 2021. (WHO classification of tumours series, 5th ed.; vol. 6). https://publications.iarc.fr/601.
  2. 2.0 2.1 2.2 2.3 2.4 2.5 2.6 Ostrom, Quinn T.; et al. (2019-11-01). "CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2012-2016". Neuro-Oncology. 21 (Suppl 5): v1–v100. doi:10.1093/neuonc/noz150. ISSN 1523-5866. PMC 6823730. PMID 31675094.
  3. 3.0 3.1 Lee, Chang-Hyun; et al. (2010-08). "Epidemiology of primary brain and central nervous system tumors in Korea". Journal of Korean Neurosurgical Society. 48 (2): 145–152. doi:10.3340/jkns.2010.48.2.145. ISSN 1598-7876. PMC 2941858. PMID 20856664. Check date values in: |date= (help)
  4. 4.0 4.1 Darlix, Amélie; et al. (2017-02). "Epidemiology for primary brain tumors: a nationwide population-based study". Journal of Neuro-Oncology. 131 (3): 525–546. doi:10.1007/s11060-016-2318-3. ISSN 1573-7373. PMID 27853959. Check date values in: |date= (help)
  5. Wijnenga, Maarten M. J.; et al. (2018-01-10). "The impact of surgery in molecularly defined low-grade glioma: an integrated clinical, radiological, and molecular analysis". Neuro-Oncology. 20 (1): 103–112. doi:10.1093/neuonc/nox176. ISSN 1523-5866. PMC 5761503. PMID 29016833.
  6. 6.0 6.1 6.2 Zetterling, Maria; et al. (2017). "Prognostic markers for survival in patients with oligodendroglial tumors; a single-institution review of 214 cases". PloS One. 12 (11): e0188419. doi:10.1371/journal.pone.0188419. ISSN 1932-6203. PMC 5706698. PMID 29186201.
  7. Andersen, Brian M.; et al. (2019-05-21). "Leptomeningeal metastases in glioma: The Memorial Sloan Kettering Cancer Center experience". Neurology. 92 (21): e2483–e2491. doi:10.1212/WNL.0000000000007529. ISSN 1526-632X. PMC 6541431. PMID 31019097.
  8. Herrlinger, Ulrich; et al. (2016-02). "Gliomatosis cerebri: no evidence for a separate brain tumor entity". Acta Neuropathologica. 131 (2): 309–319. doi:10.1007/s00401-015-1495-z. ISSN 1432-0533. PMID 26493382. Check date values in: |date= (help)
  9. Fountas, Kostas N.; et al. (2005-02). "Primary spinal cord oligodendroglioma: case report and review of the literature". Child's Nervous System: ChNS: Official Journal of the International Society for Pediatric Neurosurgery. 21 (2): 171–175. doi:10.1007/s00381-004-0973-8. ISSN 0256-7040. PMID 15138790. Check date values in: |date= (help)
  10. Hasturk, Askin Esen; et al. (2017). "A very rare spinal cord tumor primary spinal oligodendroglioma: A review of sixty cases in the literature". Journal of Craniovertebral Junction & Spine. 8 (3): 253–262. doi:10.4103/jcvjs.JCVJS_1_17. ISSN 0974-8237. PMC 5634112. PMID 29021677.
  11. Merrell, Ryan; et al. (2006-11). "1p/19q chromosome deletions in metastatic oligodendroglioma". Journal of Neuro-Oncology. 80 (2): 203–207. doi:10.1007/s11060-006-9179-0. ISSN 0167-594X. PMID 16710746. Check date values in: |date= (help)
  12. Singh, Vikas K.; et al. (2019-07). "Anaplastic oligodendroglioma metastasizing to the bone marrow: a unique case report and literature review". The International Journal of Neuroscience. 129 (7): 722–728. doi:10.1080/00207454.2018.1557165. ISSN 1563-5279. PMID 30526175. Check date values in: |date= (help)
  13. Burgy, Mickaël; et al. (2019-06-28). "Bone metastases from a 1p/19q codeleted and IDH1-mutant anaplastic oligodendroglioma: a case report". Journal of Medical Case Reports. 13 (1): 202. doi:10.1186/s13256-019-2061-4. ISSN 1752-1947. PMC 6598291. PMID 31248444.
  14. 14.0 14.1 Liu, Xiao-Yang; et al. (2012-11). "Frequent ATRX mutations and loss of expression in adult diffuse astrocytic tumors carrying IDH1/IDH2 and TP53 mutations". Acta Neuropathologica. 124 (5): 615–625. doi:10.1007/s00401-012-1031-3. ISSN 1432-0533. PMID 22886134. Check date values in: |date= (help)
  15. Ligon, Keith L.; et al. (2004-05). "The oligodendroglial lineage marker OLIG2 is universally expressed in diffuse gliomas". Journal of Neuropathology and Experimental Neurology. 63 (5): 499–509. doi:10.1093/jnen/63.5.499. ISSN 0022-3069. PMID 15198128. Check date values in: |date= (help)
  16. Reifenberger, G.; et al. (1987). "Differential expression of glial- and neuronal-associated antigens in human tumors of the central and peripheral nervous system". Acta Neuropathologica. 74 (2): 105–123. doi:10.1007/BF00692841. ISSN 0001-6322. PMID 3314309.
  17. Blümcke, I.; et al. (2001-10). "Distinct expression pattern of microtubule-associated protein-2 in human oligodendrogliomas and glial precursor cells". Journal of Neuropathology and Experimental Neurology. 60 (10): 984–993. doi:10.1093/jnen/60.10.984. ISSN 0022-3069. PMID 11589429. Check date values in: |date= (help)
  18. Bannykh, Sergei I.; et al. (2006-01). "Oligodendroglial-specific transcriptional factor SOX10 is ubiquitously expressed in human gliomas". Journal of Neuro-Oncology. 76 (2): 115–127. doi:10.1007/s11060-005-5533-x. ISSN 0167-594X. PMID 16205963. Check date values in: |date= (help)
  19. Capper, David; et al. (2009-11). "Monoclonal antibody specific for IDH1 R132H mutation". Acta Neuropathologica. 118 (5): 599–601. doi:10.1007/s00401-009-0595-z. ISSN 1432-0533. PMID 19798509. Check date values in: |date= (help)
  20. Perry, Arie; et al. (2010-08). "Oligodendroglial neoplasms with ganglioglioma-like maturation: a diagnostic pitfall". Acta Neuropathologica. 120 (2): 237–252. doi:10.1007/s00401-010-0695-9. ISSN 1432-0533. PMC 2892612. PMID 20464403. Check date values in: |date= (help)
  21. 21.0 21.1 Griffin, Constance A.; et al. (2006-10). "Identification of der(1;19)(q10;p10) in five oligodendrogliomas suggests mechanism of concurrent 1p and 19q loss". Journal of Neuropathology and Experimental Neurology. 65 (10): 988–994. doi:10.1097/01.jnen.0000235122.98052.8f. ISSN 0022-3069. PMID 17021403. Check date values in: |date= (help)
  22. 22.0 22.1 Jenkins, Robert B.; et al. (2006-10-15). "A t(1;19)(q10;p10) mediates the combined deletions of 1p and 19q and predicts a better prognosis of patients with oligodendroglioma". Cancer Research. 66 (20): 9852–9861. doi:10.1158/0008-5472.CAN-06-1796. ISSN 0008-5472. PMID 17047046.
  23. Fallon, Kenneth B.; et al. (2004-04). "Prognostic value of 1p, 19q, 9p, 10q, and EGFR-FISH analyses in recurrent oligodendrogliomas". Journal of Neuropathology and Experimental Neurology. 63 (4): 314–322. doi:10.1093/jnen/63.4.314. ISSN 0022-3069. PMID 15099021. Check date values in: |date= (help)
  24. Alentorn, Agustí; et al. (2015-10-13). "Allelic loss of 9p21.3 is a prognostic factor in 1p/19q codeleted anaplastic gliomas". Neurology. 85 (15): 1325–1331. doi:10.1212/WNL.0000000000002014. ISSN 1526-632X. PMC 4617162. PMID 26385879.
  25. Wesseling, Pieter; et al. (2015-06). "Oligodendroglioma: pathology, molecular mechanisms and markers". Acta Neuropathologica. 129 (6): 809–827. doi:10.1007/s00401-015-1424-1. ISSN 1432-0533. PMC 4436696. PMID 25943885. Check date values in: |date= (help)
  26. 26.0 26.1 Eckel-Passow, Jeanette E.; et al. (2015-06-25). "Glioma Groups Based on 1p/19q, IDH, and TERT Promoter Mutations in Tumors". The New England Journal of Medicine. 372 (26): 2499–2508. doi:10.1056/NEJMoa1407279. ISSN 1533-4406. PMC 4489704. PMID 26061753.
  27. 27.0 27.1 Tiburcio, Patricia D. B.; et al. (2018-10-12). "IDH1R132H is intrinsically tumor-suppressive but functionally attenuated by the glutamate-rich cerebral environment". Oncotarget. 9 (80): 35100–35113. doi:10.18632/oncotarget.26203. ISSN 1949-2553. PMC 6205547. PMID 30416682.
  28. Hartmann, Christian; et al. (2009-10). "Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas". Acta Neuropathologica. 118 (4): 469–474. doi:10.1007/s00401-009-0561-9. ISSN 1432-0533. PMID 19554337. Check date values in: |date= (help)
  29. 29.0 29.1 29.2 Cancer Genome Atlas Research Network; et al. (2015-06-25). "Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas". The New England Journal of Medicine. 372 (26): 2481–2498. doi:10.1056/NEJMoa1402121. ISSN 1533-4406. PMC 4530011. PMID 26061751.
  30. 30.0 30.1 Arita, Hideyuki; et al. (2013-08). "Upregulating mutations in the TERT promoter commonly occur in adult malignant gliomas and are strongly associated with total 1p19q loss". Acta Neuropathologica. 126 (2): 267–276. doi:10.1007/s00401-013-1141-6. ISSN 1432-0533. PMID 23764841. Check date values in: |date= (help)
  31. 31.0 31.1 Killela, Patrick J.; et al. (2013-04-09). "TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal". Proceedings of the National Academy of Sciences of the United States of America. 110 (15): 6021–6026. doi:10.1073/pnas.1303607110. ISSN 1091-6490. PMC 3625331. PMID 23530248.
  32. 32.0 32.1 Koelsche, Christian; et al. (2013-12). "Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system". Acta Neuropathologica. 126 (6): 907–915. doi:10.1007/s00401-013-1195-5. ISSN 1432-0533. PMID 24154961. Check date values in: |date= (help)
  33. Lee, Yujin; et al. (2017-08-29). "The frequency and prognostic effect of TERT promoter mutation in diffuse gliomas". Acta Neuropathologica Communications. 5 (1): 62. doi:10.1186/s40478-017-0465-1. ISSN 2051-5960. PMC 5574236. PMID 28851427.
  34. Arita, Hideyuki; et al. (2020-11-23). "TERT promoter mutation confers favorable prognosis regardless of 1p/19q status in adult diffuse gliomas with IDH1/2 mutations". Acta Neuropathologica Communications. 8 (1): 201. doi:10.1186/s40478-020-01078-2. ISSN 2051-5960. PMC 7685625 Check |pmc= value (help). PMID 33228806 Check |pmid= value (help).
  35. Lee, Julieann; et al. (2018-09-19). "Oligodendrogliomas, IDH-mutant and 1p/19q-codeleted, arising during teenage years often lack TERT promoter mutation that is typical of their adult counterparts". Acta Neuropathologica Communications. 6 (1): 95. doi:10.1186/s40478-018-0598-x. ISSN 2051-5960. PMC 6145350. PMID 30231927.
  36. LeBlanc, Veronique G.; et al. (2017-06). "Comparative transcriptome analysis of isogenic cell line models and primary cancers links capicua (CIC) loss to activation of the MAPK signalling cascade". The Journal of Pathology. 242 (2): 206–220. doi:10.1002/path.4894. ISSN 1096-9896. PMC 5485162. PMID 28295365. Check date values in: |date= (help)
  37. 37.0 37.1 Chan, Aden Ka-Yin; et al. (2014-03). "Loss of CIC and FUBP1 expressions are potential markers of shorter time to recurrence in oligodendroglial tumors". Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 27 (3): 332–342. doi:10.1038/modpathol.2013.165. ISSN 1530-0285. PMID 24030748. Check date values in: |date= (help)
  38. 38.0 38.1 Sahm, Felix; et al. (2012-06). "CIC and FUBP1 mutations in oligodendrogliomas, oligoastrocytomas and astrocytomas". Acta Neuropathologica. 123 (6): 853–860. doi:10.1007/s00401-012-0993-5. ISSN 1432-0533. PMID 22588899. Check date values in: |date= (help)
  39. 39.0 39.1 Bettegowda, Chetan; et al. (2011-09-09). "Mutations in CIC and FUBP1 contribute to human oligodendroglioma". Science (New York, N.Y.). 333 (6048): 1453–1455. doi:10.1126/science.1210557. ISSN 1095-9203. PMC 3170506. PMID 21817013.
  40. Kang, Mingyu; et al. (2020-05-28). "Multiple Functions of Fubp1 in Cell Cycle Progression and Cell Survival". Cells. 9 (6): 1347. doi:10.3390/cells9061347. ISSN 2073-4409. PMC 7349734 Check |pmc= value (help). PMID 32481602 Check |pmid= value (help).
  41. Suzuki, Hiromichi; et al. (2015-05). "Mutational landscape and clonal architecture in grade II and III gliomas". Nature Genetics. 47 (5): 458–468. doi:10.1038/ng.3273. ISSN 1546-1718. PMID 25848751. Check date values in: |date= (help)
  42. 42.0 42.1 Aoki, Kosuke; et al. (2018-01-10). "Prognostic relevance of genetic alterations in diffuse lower-grade gliomas". Neuro-Oncology. 20 (1): 66–77. doi:10.1093/neuonc/nox132. ISSN 1523-5866. PMC 5761527. PMID 29016839.
  43. Halani, Sameer H.; et al. (2018). "Multi-faceted computational assessment of risk and progression in oligodendroglioma implicates NOTCH and PI3K pathways". NPJ precision oncology. 2: 24. doi:10.1038/s41698-018-0067-9. ISSN 2397-768X. PMC 6219505. PMID 30417117.
  44. Tateishi, Kensuke; et al. (2019-07-15). "PI3K/AKT/mTOR Pathway Alterations Promote Malignant Progression and Xenograft Formation in Oligodendroglial Tumors". Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 25 (14): 4375–4387. doi:10.1158/1078-0432.CCR-18-4144. ISSN 1557-3265. PMC 6924174. PMID 30975663.
  45. Broderick, Daniel K.; et al. (2004-08-01). "Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas". Cancer Research. 64 (15): 5048–5050. doi:10.1158/0008-5472.CAN-04-1170. ISSN 0008-5472. PMID 15289301.
  46. 46.0 46.1 Brito, Cheila; et al. (2022). "PIK3CA Mutations in Diffuse Gliomas: An Update on Molecular Stratification, Prognosis, Recurrence, and Aggressiveness". Clinical Medicine Insights. Oncology. 16: 11795549211068804. doi:10.1177/11795549211068804. ISSN 1179-5549. PMC 8743979 Check |pmc= value (help). PMID 35023985 Check |pmid= value (help).
  47. 47.0 47.1 Labreche, Karim; et al. (2015-06-12). "TCF12 is mutated in anaplastic oligodendroglioma". Nature Communications. 6: 7207. doi:10.1038/ncomms8207. ISSN 2041-1723. PMC 4490400. PMID 26068201.
  48. Weissmann, Simon; et al. (2018-08-01). "The Tumor Suppressor CIC Directly Regulates MAPK Pathway Genes via Histone Deacetylation". Cancer Research. 78 (15): 4114–4125. doi:10.1158/0008-5472.CAN-18-0342. ISSN 1538-7445. PMC 6076439. PMID 29844126.
  49. Bainbridge, Matthew N.; et al. (2015-01). "Germline mutations in shelterin complex genes are associated with familial glioma". Journal of the National Cancer Institute. 107 (1): 384. doi:10.1093/jnci/dju384. ISSN 1460-2105. PMC 4296199. PMID 25482530. Check date values in: |date= (help)

Notes

*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.