Difference between revisions of "HAEM5:Myeloid/lymphoid neoplasms with other tyrosine kinase fusion genes"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][pending revision]
 
(24 intermediate revisions by one other user not shown)
Line 9: Line 9:
  
  
Put your text here<span style="color:#0070C0"> (''<span class="blue-text">EXAMPLE:</span>'' Jane Smith, PhD) </span>
+
Put your text here<span style="color:#0070C0"> (Rolando Garcia, PhD) </span>
 
==WHO Classification of Disease==
 
==WHO Classification of Disease==
  
Line 37: Line 37:
 
|+
 
|+
 
|WHO Essential Criteria (Genetics)*
 
|WHO Essential Criteria (Genetics)*
|
+
|Detection of a tyrosine kinase fusion gene not classified under specific unique entities (''PDGFRA, PDGFRB, FGFR1, JAK2, FLT3, ETV6::ABL1'').
 
|-
 
|-
 
|WHO Desirable Criteria (Genetics)*
 
|WHO Desirable Criteria (Genetics)*
|
+
|Cytogenetic translocation suggesting a potential involvement of a tyrosine kinase gene, with selection of a FISH break-apart probe or another molecular assay for confirmation.
 
|-
 
|-
 
|Other Classification
 
|Other Classification
|
+
|Other desirable criteria: Presence of eosinophilia.
 
|}
 
|}
 
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
 
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
Line 51: Line 51:
 
|+
 
|+
 
|Acceptable
 
|Acceptable
|
+
|Myeloid/lymphoid neoplasms with other tyrosine kinase fusion genes, Other and unspecified myeloproliferative neoplasms.
 
|-
 
|-
 
|Not Recommended
 
|Not Recommended
|
+
|Myeloid/lymphoid neoplasms with tyrosine kinase fusion genes (NOS).
 
|}
 
|}
  
Line 67: Line 67:
 
!Clinical Relevance Details/Other Notes
 
!Clinical Relevance Details/Other Notes
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)
+
|''FGFR2''||''ETV6::FGFR2'' <ref>{{Cite journal|last=Carll|first=Timothy|last2=Patel|first2=Anand|last3=Derman|first3=Benjamin|last4=Hyjek|first4=Elizabeth|last5=Lager|first5=Angela|last6=Wanjari|first6=Pankhuri|last7=Segal|first7=Jeremy|last8=Odenike|first8=Olatoyosi|last9=Fidai|first9=Shiraz|date=2020-10-13|title=Diagnosis and treatment of mixed phenotype (T-myeloid/lymphoid) acute leukemia with novel ETV6-FGFR2 rearrangement|url=https://pubmed.ncbi.nlm.nih.gov/33049052|journal=Blood Advances|volume=4|issue=19|pages=4924–4928|doi=10.1182/bloodadvances.2019001282|issn=2473-9537|pmc=7556145|pmid=33049052}}</ref>||Fusion between exon 4 of ''ETV6'' and exon 5 of ''FGFR2'' (5′ to 3′ orientation).||Cryptic rearrangement detected by FISH involving chromosomes 10 and 12
|<span class="blue-text">EXAMPLE:</span> Common (CML)
+
|Rare < 5%
|<span class="blue-text">EXAMPLE:</span> D, P, T
+
|D, P, T
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN)
+
|Yes (WHO)
|<span class="blue-text">EXAMPLE:</span>
+
|Myeloid / lymphoid acute leukemia.  This fusion suggests abnormal ''FGFR2'' expression. Aberrant The ''FGFR2'' activation resulting from ''ETV6::FGFR2'' may respond to ''FGFR1,2,3'' tyrosine kinase inhibitors (TKIs). <ref>{{Cite journal|last=Katoh|first=Masaru|date=2019-02|title=Fibroblast growth factor receptors as treatment targets in clinical oncology|url=https://pubmed.ncbi.nlm.nih.gov/30367139|journal=Nature Reviews. Clinical Oncology|volume=16|issue=2|pages=105–122|doi=10.1038/s41571-018-0115-y|issn=1759-4782|pmid=30367139}}</ref> This rearrangement exhibited aggressive clinical behavior, demonstrating resistance to both conventional and intensive chemotherapy, as well as allogeneic stem cell transplantation.<ref>{{Cite journal|last=Carll|first=Timothy|last2=Patel|first2=Anand|last3=Derman|first3=Benjamin|last4=Hyjek|first4=Elizabeth|last5=Lager|first5=Angela|last6=Wanjari|first6=Pankhuri|last7=Segal|first7=Jeremy|last8=Odenike|first8=Olatoyosi|last9=Fidai|first9=Shiraz|date=2020-10-13|title=Diagnosis and treatment of mixed phenotype (T-myeloid/lymphoid) acute leukemia with novel ETV6-FGFR2 rearrangement|url=https://pubmed.ncbi.nlm.nih.gov/33049052|journal=Blood Advances|volume=4|issue=19|pages=4924–4928|doi=10.1182/bloodadvances.2019001282|issn=2473-9537|pmc=7556145|pmid=33049052}}</ref> The prognosis remains unclear due to the limited number of cases.
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).
+
|-
 +
|''LYN''
 +
|''ETV6::LYN'' <ref>{{Cite journal|last=Telford|first=N.|last2=Alexander|first2=S.|last3=McGinn|first3=O. J.|last4=Williams|first4=M.|last5=Wood|first5=K. M.|last6=Bloor|first6=A.|last7=Saha|first7=V.|date=2016-04-08|title=Myeloproliferative neoplasm with eosinophilia and T-lymphoblastic lymphoma with ETV6-LYN gene fusion|url=https://pubmed.ncbi.nlm.nih.gov/27058227|journal=Blood Cancer Journal|volume=6|issue=4|pages=e412|doi=10.1038/bcj.2016.11|issn=2044-5385|pmc=4855251|pmid=27058227}}</ref><ref>{{Cite journal|last=Ma|first=Edmond S. K.|last2=Wan|first2=Thomas S. K.|last3=Au|first3=Chun Hang|last4=Ho|first4=Dona N.|last5=Ma|first5=Shing Yan|last6=Ng|first6=Margaret H. L.|last7=Chan|first7=Tsun Leung|date=2017-12|title=Next-generation sequencing and molecular cytogenetic characterization of ETV6-LYN fusion due to chromosomes 1, 8 and 12 rearrangement in acute myeloid leukemia|url=https://pubmed.ncbi.nlm.nih.gov/29153093|journal=Cancer Genetics|volume=218-219|pages=15–19|doi=10.1016/j.cancergen.2017.09.001|issn=2210-7762|pmid=29153093}}</ref><ref>{{Cite journal|last=Tanaka|first=H.|last2=Takeuchi|first2=M.|last3=Takeda|first3=Y.|last4=Sakai|first4=S.|last5=Abe|first5=D.|last6=Ohwada|first6=C.|last7=Sakaida|first7=E.|last8=Shimizu|first8=N.|last9=Saito|first9=Y.|date=2010-01|title=Identification of a novel TEL-Lyn fusion gene in primary myelofibrosis|url=https://pubmed.ncbi.nlm.nih.gov/19710703|journal=Leukemia|volume=24|issue=1|pages=197–200|doi=10.1038/leu.2009.167|issn=1476-5551|pmid=19710703}}</ref>
 +
|Fusion between exon 5 in ''ETV6'' to exon 8 in ''LYN'' (5′ to 3′ orientation to produce an in-frame chimeric fusion)
 +
|Complex rearrangements involving chromosomes 8 and 12 [e.g. t(8;12)(q12;p13), ins(12;8)(p13;q11q21)]
 +
|Rare < 5%
 +
|D. P,T
 +
|Yes (WHO)
 +
|Acute myeloid leukemia / primary myelofibrosis/ T-lymphoblastic leukemia. Resistant to intensive chemotherapy or stem cell transplant, the disease progressed rapidly to terminal AML.<ref>{{Cite journal|last=Telford|first=N.|last2=Alexander|first2=S.|last3=McGinn|first3=O. J.|last4=Williams|first4=M.|last5=Wood|first5=K. M.|last6=Bloor|first6=A.|last7=Saha|first7=V.|date=2016-04-08|title=Myeloproliferative neoplasm with eosinophilia and T-lymphoblastic lymphoma with ETV6-LYN gene fusion|url=https://pubmed.ncbi.nlm.nih.gov/27058227|journal=Blood Cancer Journal|volume=6|issue=4|pages=e412|doi=10.1038/bcj.2016.11|issn=2044-5385|pmc=4855251|pmid=27058227}}</ref> Prognosis is not well defined due to the small number of cases.
 +
|-
 +
|''NTRK3''
 +
|''ETV6::NTRK3''<ref>{{Cite journal|last=Reshmi|first=Shalini C.|last2=Harvey|first2=Richard C.|last3=Roberts|first3=Kathryn G.|last4=Stonerock|first4=Eileen|last5=Smith|first5=Amy|last6=Jenkins|first6=Heather|last7=Chen|first7=I.-Ming|last8=Valentine|first8=Marc|last9=Liu|first9=Yu|date=2017-06-22|title=Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group|url=https://pubmed.ncbi.nlm.nih.gov/28408464|journal=Blood|volume=129|issue=25|pages=3352–3361|doi=10.1182/blood-2016-12-758979|issn=1528-0020|pmc=5482101|pmid=28408464}}</ref><ref>{{Cite journal|last=Roberts|first=Kathryn G.|last2=Li|first2=Yongjin|last3=Payne-Turner|first3=Debbie|last4=Harvey|first4=Richard C.|last5=Yang|first5=Yung-Li|last6=Pei|first6=Deqing|last7=McCastlain|first7=Kelly|last8=Ding|first8=Li|last9=Lu|first9=Charles|date=2014-09-11|title=Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/25207766|journal=The New England Journal of Medicine|volume=371|issue=11|pages=1005–1015|doi=10.1056/NEJMoa1403088|issn=1533-4406|pmc=4191900|pmid=25207766}}</ref>
 +
|Fusion between ''ETV6'' and ''NTRK3'' (5′ to 3′ orientation)
 +
|t(12;15)(p13;q25)
 +
|Rare < 5%
 +
|T
 +
|Yes (WHO)
 +
|''ETV6::NTRK3'' is reported in multiple cancers but rare in acute lymphoblastic leukemia.<ref>{{Cite journal|last=Knezevich|first=S. R.|last2=Garnett|first2=M. J.|last3=Pysher|first3=T. J.|last4=Beckwith|first4=J. B.|last5=Grundy|first5=P. E.|last6=Sorensen|first6=P. H.|date=1998-11-15|title=ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma|url=https://pubmed.ncbi.nlm.nih.gov/9823307|journal=Cancer Research|volume=58|issue=22|pages=5046–5048|issn=0008-5472|pmid=9823307}}</ref><ref>{{Cite journal|last=Tognon|first=Cristina|last2=Knezevich|first2=Stevan R.|last3=Huntsman|first3=David|last4=Roskelley|first4=Calvin D.|last5=Melnyk|first5=Natalya|last6=Mathers|first6=Joan A.|last7=Becker|first7=Laurence|last8=Carneiro|first8=Fatima|last9=MacPherson|first9=Nicol|date=2002-11|title=Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma|url=https://pubmed.ncbi.nlm.nih.gov/12450792|journal=Cancer Cell|volume=2|issue=5|pages=367–376|doi=10.1016/s1535-6108(02)00180-0|issn=1535-6108|pmid=12450792}}</ref><ref>{{Cite journal|last=Alessandri|first=A. J.|last2=Knezevich|first2=S. R.|last3=Mathers|first3=J. A.|last4=Schultz|first4=K. R.|last5=Sorensen|first5=P. H.|date=2001-10|title=Absence of t(12;15) associated ETV6-NTRK3 fusion transcripts in pediatric acute leukemias|url=https://pubmed.ncbi.nlm.nih.gov/11568911|journal=Medical and Pediatric Oncology|volume=37|issue=4|pages=415–416|doi=10.1002/mpo.1222|issn=0098-1532|pmid=11568911}}</ref> The ''ETV6::NTRK3'' responded to the ALK inhibitory crizotinib.<ref>{{Cite journal|last=Roberts|first=Kathryn G.|last2=Li|first2=Yongjin|last3=Payne-Turner|first3=Debbie|last4=Harvey|first4=Richard C.|last5=Yang|first5=Yung-Li|last6=Pei|first6=Deqing|last7=McCastlain|first7=Kelly|last8=Ding|first8=Li|last9=Lu|first9=Charles|date=2014-09-11|title=Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/25207766|journal=The New England Journal of Medicine|volume=371|issue=11|pages=1005–1015|doi=10.1056/NEJMoa1403088|issn=1533-4406|pmc=4191900|pmid=25207766}}</ref> Prognosis is not well defined due to the small number of cases.
 +
|-
 +
|ALK
 +
|''RANBP2::ALK''<ref>{{Cite journal|last=Röttgers|first=S.|last2=Gombert|first2=M.|last3=Teigler-Schlegel|first3=A.|last4=Busch|first4=K.|last5=Gamerdinger|first5=U.|last6=Slany|first6=R.|last7=Harbott|first7=J.|last8=Borkhardt|first8=A.|date=2010-06|title=ALK fusion genes in children with atypical myeloproliferative leukemia|url=https://pubmed.ncbi.nlm.nih.gov/20428197|journal=Leukemia|volume=24|issue=6|pages=1197–1200|doi=10.1038/leu.2010.18|issn=1476-5551|pmid=20428197}}</ref><ref>{{Cite journal|last=Lim|first=Ji-Hun|last2=Jang|first2=Seongsoo|last3=Park|first3=Chan-Jeoung|last4=Cho|first4=Young-Uk|last5=Lee|first5=Je-Hwan|last6=Lee|first6=Kyoo-Hyung|last7=Lee|first7=Jin-Ok|last8=Shin|first8=Jong-Yeon|last9=Kim|first9=Jong-Il|date=2014|title=RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/24613277|journal=Cancer Genetics|volume=207|issue=1-2|pages=40–45|doi=10.1016/j.cancergen.2013.12.003|issn=2210-7762|pmid=24613277}}</ref>
 +
|exon 18 of ''RANBP2'' and exon 20 of ''ALK'' (5′ to 3′ orientation).<ref>{{Cite journal|last=Lim|first=Ji-Hun|last2=Jang|first2=Seongsoo|last3=Park|first3=Chan-Jeoung|last4=Cho|first4=Young-Uk|last5=Lee|first5=Je-Hwan|last6=Lee|first6=Kyoo-Hyung|last7=Lee|first7=Jin-Ok|last8=Shin|first8=Jong-Yeon|last9=Kim|first9=Jong-Il|date=2014|title=RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/24613277|journal=Cancer Genetics|volume=207|issue=1-2|pages=40–45|doi=10.1016/j.cancergen.2013.12.003|issn=2210-7762|pmid=24613277}}</ref> Leads to constitutive autophosphorylation of ''ALK'' tyrosine kinase and activating downstream signaling.<ref>{{Cite journal|last=Maesako|first=Yoshitomo|last2=Izumi|first2=Kiyotaka|last3=Okamori|first3=Satoshi|last4=Takeoka|first4=Kayo|last5=Kishimori|first5=Chiyuki|last6=Okumura|first6=Atsuko|last7=Honjo|first7=Gen|last8=Akasaka|first8=Takashi|last9=Ohno|first9=Hitoshi|date=2014-02|title=inv(2)(p23q13)/RAN-binding protein 2 (RANBP2)-ALK fusion gene in myeloid leukemia that developed in an elderly woman|url=https://pubmed.ncbi.nlm.nih.gov/24307515|journal=International Journal of Hematology|volume=99|issue=2|pages=202–207|doi=10.1007/s12185-013-1482-x|issn=1865-3774|pmid=24307515}}</ref>
 +
|inv(2)(p23q13) / t(2;2)(p23;q13)<ref>{{Cite journal|last=Röttgers|first=S.|last2=Gombert|first2=M.|last3=Teigler-Schlegel|first3=A.|last4=Busch|first4=K.|last5=Gamerdinger|first5=U.|last6=Slany|first6=R.|last7=Harbott|first7=J.|last8=Borkhardt|first8=A.|date=2010-06|title=ALK fusion genes in children with atypical myeloproliferative leukemia|url=https://pubmed.ncbi.nlm.nih.gov/20428197|journal=Leukemia|volume=24|issue=6|pages=1197–1200|doi=10.1038/leu.2010.18|issn=1476-5551|pmid=20428197}}</ref> <ref>{{Cite journal|last=Lim|first=Ji-Hun|last2=Jang|first2=Seongsoo|last3=Park|first3=Chan-Jeoung|last4=Cho|first4=Young-Uk|last5=Lee|first5=Je-Hwan|last6=Lee|first6=Kyoo-Hyung|last7=Lee|first7=Jin-Ok|last8=Shin|first8=Jong-Yeon|last9=Kim|first9=Jong-Il|date=2014|title=RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/24613277|journal=Cancer Genetics|volume=207|issue=1-2|pages=40–45|doi=10.1016/j.cancergen.2013.12.003|issn=2210-7762|pmid=24613277}}</ref>
 +
|Rare < 5%
 +
|D, P, T
 +
|Yes (WHO)
 +
|Acute myelomonocytic leukemia/ myeloproliferative leukemia.  Resistant to intensive chemotherapy and allogeneic SCT. Poor clinical outcome.<ref>{{Cite journal|last=Lim|first=Ji-Hun|last2=Jang|first2=Seongsoo|last3=Park|first3=Chan-Jeoung|last4=Cho|first4=Young-Uk|last5=Lee|first5=Je-Hwan|last6=Lee|first6=Kyoo-Hyung|last7=Lee|first7=Jin-Ok|last8=Shin|first8=Jong-Yeon|last9=Kim|first9=Jong-Il|date=2014|title=RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/24613277|journal=Cancer Genetics|volume=207|issue=1-2|pages=40–45|doi=10.1016/j.cancergen.2013.12.003|issn=2210-7762|pmid=24613277}}</ref> Prognosis is not well defined due to the small number of cases.
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> ''CIC''
 
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4''
 
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''.
 
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13)
 
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma)
 
|<span class="blue-text">EXAMPLE:</span> D
 
 
|
 
|
|<span class="blue-text">EXAMPLE:</span>
 
  
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
 
|-
 
|<span class="blue-text">EXAMPLE:</span> ''ALK''
 
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK''
 
  
 +
''RET''
  
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1''
+
|''BCR::RET''<ref>{{Cite journal|last=Ballerini|first=P.|last2=Struski|first2=S.|last3=Cresson|first3=C.|last4=Prade|first4=N.|last5=Toujani|first5=S.|last6=Deswarte|first6=C.|last7=Dobbelstein|first7=S.|last8=Petit|first8=A.|last9=Lapillonne|first9=H.|date=2012-11|title=RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation|url=https://pubmed.ncbi.nlm.nih.gov/22513837|journal=Leukemia|volume=26|issue=11|pages=2384–2389|doi=10.1038/leu.2012.109|issn=1476-5551|pmid=22513837}}</ref>
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18.
+
|Fusion between ''BCR'' exon 4 with the ''RET'' exon 12 (5′ to 3′ orientation).<ref>{{Cite journal|last=Ballerini|first=P.|last2=Struski|first2=S.|last3=Cresson|first3=C.|last4=Prade|first4=N.|last5=Toujani|first5=S.|last6=Deswarte|first6=C.|last7=Dobbelstein|first7=S.|last8=Petit|first8=A.|last9=Lapillonne|first9=H.|date=2012-11|title=RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation|url=https://pubmed.ncbi.nlm.nih.gov/22513837|journal=Leukemia|volume=26|issue=11|pages=2384–2389|doi=10.1038/leu.2012.109|issn=1476-5551|pmid=22513837}}</ref> Aberrant expression of the kinase domain.
|<span class="blue-text">EXAMPLE:</span> N/A
+
|t(10;22)(q11;q11)<ref>{{Cite journal|last=Ballerini|first=P.|last2=Struski|first2=S.|last3=Cresson|first3=C.|last4=Prade|first4=N.|last5=Toujani|first5=S.|last6=Deswarte|first6=C.|last7=Dobbelstein|first7=S.|last8=Petit|first8=A.|last9=Lapillonne|first9=H.|date=2012-11|title=RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation|url=https://pubmed.ncbi.nlm.nih.gov/22513837|journal=Leukemia|volume=26|issue=11|pages=2384–2389|doi=10.1038/leu.2012.109|issn=1476-5551|pmid=22513837}}</ref>
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma)
+
|Rare <5%
|<span class="blue-text">EXAMPLE:</span> T
+
|D, P, T
 +
|Yes (WHO)
 
|
 
|
|<span class="blue-text">EXAMPLE:</span>
 
  
Both balanced and unbalanced forms are observed by FISH (add references).
+
 
 +
Associated with chronic myelomonocytic leukemia and monocytic differentiation. Sensitive to Sorafenib, an inhibitor to tyrosine kinase activity.<ref>{{Cite journal|last=Ballerini|first=P.|last2=Struski|first2=S.|last3=Cresson|first3=C.|last4=Prade|first4=N.|last5=Toujani|first5=S.|last6=Deswarte|first6=C.|last7=Dobbelstein|first7=S.|last8=Petit|first8=A.|last9=Lapillonne|first9=H.|date=2012-11|title=RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation|url=https://pubmed.ncbi.nlm.nih.gov/22513837|journal=Leukemia|volume=26|issue=11|pages=2384–2389|doi=10.1038/leu.2012.109|issn=1476-5551|pmid=22513837}}</ref> The prognosis not well defined due to the limited number of cases.  
 +
 
 +
 
 +
 
 +
<br />
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> ''ABL1''
 
|<span class="blue-text">EXAMPLE:</span> N/A
 
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways.
 
|<span class="blue-text">EXAMPLE:</span> N/A
 
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma)
 
|<span class="blue-text">EXAMPLE:</span> D, P, T
 
|
 
|
 
|-
 
|
 
|
 
|
 
|
 
|
 
|
 
|
 
 
|
 
|
 +
 +
 +
''RET''
 +
 +
|''FGFR1OP::RET''<ref>{{Cite journal|last=Ballerini|first=P.|last2=Struski|first2=S.|last3=Cresson|first3=C.|last4=Prade|first4=N.|last5=Toujani|first5=S.|last6=Deswarte|first6=C.|last7=Dobbelstein|first7=S.|last8=Petit|first8=A.|last9=Lapillonne|first9=H.|date=2012-11|title=RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation|url=https://pubmed.ncbi.nlm.nih.gov/22513837|journal=Leukemia|volume=26|issue=11|pages=2384–2389|doi=10.1038/leu.2012.109|issn=1476-5551|pmid=22513837}}</ref>
 +
|Fusion between ''FGFR1OP'' exon 12 with ''RET'' exon 12 (5′ to 3′ orientation).<ref>{{Cite journal|last=Ballerini|first=P.|last2=Struski|first2=S.|last3=Cresson|first3=C.|last4=Prade|first4=N.|last5=Toujani|first5=S.|last6=Deswarte|first6=C.|last7=Dobbelstein|first7=S.|last8=Petit|first8=A.|last9=Lapillonne|first9=H.|date=2012-11|title=RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation|url=https://pubmed.ncbi.nlm.nih.gov/22513837|journal=Leukemia|volume=26|issue=11|pages=2384–2389|doi=10.1038/leu.2012.109|issn=1476-5551|pmid=22513837}}</ref> Abnormal expression of the tyrosine kinase domain.
 +
|t(6;10)(q27;q11)<ref>{{Cite journal|last=Ballerini|first=P.|last2=Struski|first2=S.|last3=Cresson|first3=C.|last4=Prade|first4=N.|last5=Toujani|first5=S.|last6=Deswarte|first6=C.|last7=Dobbelstein|first7=S.|last8=Petit|first8=A.|last9=Lapillonne|first9=H.|date=2012-11|title=RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation|url=https://pubmed.ncbi.nlm.nih.gov/22513837|journal=Leukemia|volume=26|issue=11|pages=2384–2389|doi=10.1038/leu.2012.109|issn=1476-5551|pmid=22513837}}</ref>
 +
|Rare <5%
 +
|D, P, T
 +
|Yes (WHO)
 +
|Associated with chronic myelomonocytic leukemia and monocytic differentiation. The prognosis remains unclear due to the limited number of cases.
 
|}
 
|}
 
==Individual Region Genomic Gain/Loss/LOH==
 
==Individual Region Genomic Gain/Loss/LOH==
Line 294: Line 310:
 
          
 
          
 
<nowiki>*</nowiki>''Citation of this Page'': “Myeloid/lymphoid neoplasms with other tyrosine kinase fusion genes”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Myeloid/lymphoid_neoplasms_with_other_tyrosine_kinase_fusion_genes</nowiki>.
 
<nowiki>*</nowiki>''Citation of this Page'': “Myeloid/lymphoid neoplasms with other tyrosine kinase fusion genes”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Myeloid/lymphoid_neoplasms_with_other_tyrosine_kinase_fusion_genes</nowiki>.
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases M]]
+
[[Category:HAEM5]]
 +
[[Category:DISEASE]]
 +
[[Category:Diseases M]]
 +
<references />

Latest revision as of 12:42, 24 March 2025

Haematolymphoid Tumours (WHO Classification, 5th ed.)

(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)

Primary Author(s)*

Put your text here (Rolando Garcia, PhD)

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category Myeloid proliferations and neoplasms
Family Myeloid/lymphoid neoplasms
Type Myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangement
Subtype(s) Myeloid/lymphoid neoplasms with other tyrosine kinase fusion genes

WHO Essential and Desirable Genetic Diagnostic Criteria

(Instructions: The table will have the diagnostic criteria from the WHO book autocompleted; remove any non-genetics related criteria. If applicable, add text about other classification systems that define this entity and specify how the genetics-related criteria differ.)

WHO Essential Criteria (Genetics)* Detection of a tyrosine kinase fusion gene not classified under specific unique entities (PDGFRA, PDGFRB, FGFR1, JAK2, FLT3, ETV6::ABL1).
WHO Desirable Criteria (Genetics)* Cytogenetic translocation suggesting a potential involvement of a tyrosine kinase gene, with selection of a FISH break-apart probe or another molecular assay for confirmation.
Other Classification Other desirable criteria: Presence of eosinophilia.

*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.

Related Terminology

(Instructions: The table will have the related terminology from the WHO autocompleted.)

Acceptable Myeloid/lymphoid neoplasms with other tyrosine kinase fusion genes, Other and unspecified myeloproliferative neoplasms.
Not Recommended Myeloid/lymphoid neoplasms with tyrosine kinase fusion genes (NOS).

Gene Rearrangements

Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
FGFR2 ETV6::FGFR2 [1] Fusion between exon 4 of ETV6 and exon 5 of FGFR2 (5′ to 3′ orientation). Cryptic rearrangement detected by FISH involving chromosomes 10 and 12 Rare < 5% D, P, T Yes (WHO) Myeloid / lymphoid acute leukemia. This fusion suggests abnormal FGFR2 expression. Aberrant The FGFR2 activation resulting from ETV6::FGFR2 may respond to FGFR1,2,3 tyrosine kinase inhibitors (TKIs). [2] This rearrangement exhibited aggressive clinical behavior, demonstrating resistance to both conventional and intensive chemotherapy, as well as allogeneic stem cell transplantation.[3] The prognosis remains unclear due to the limited number of cases.
LYN ETV6::LYN [4][5][6] Fusion between exon 5 in ETV6 to exon 8 in LYN (5′ to 3′ orientation to produce an in-frame chimeric fusion) Complex rearrangements involving chromosomes 8 and 12 [e.g. t(8;12)(q12;p13), ins(12;8)(p13;q11q21)] Rare < 5% D. P,T Yes (WHO) Acute myeloid leukemia / primary myelofibrosis/ T-lymphoblastic leukemia. Resistant to intensive chemotherapy or stem cell transplant, the disease progressed rapidly to terminal AML.[7] Prognosis is not well defined due to the small number of cases.
NTRK3 ETV6::NTRK3[8][9] Fusion between ETV6 and NTRK3 (5′ to 3′ orientation) t(12;15)(p13;q25) Rare < 5% T Yes (WHO) ETV6::NTRK3 is reported in multiple cancers but rare in acute lymphoblastic leukemia.[10][11][12] The ETV6::NTRK3 responded to the ALK inhibitory crizotinib.[13] Prognosis is not well defined due to the small number of cases.
ALK RANBP2::ALK[14][15] exon 18 of RANBP2 and exon 20 of ALK (5′ to 3′ orientation).[16] Leads to constitutive autophosphorylation of ALK tyrosine kinase and activating downstream signaling.[17] inv(2)(p23q13) / t(2;2)(p23;q13)[18] [19] Rare < 5% D, P, T Yes (WHO) Acute myelomonocytic leukemia/ myeloproliferative leukemia. Resistant to intensive chemotherapy and allogeneic SCT. Poor clinical outcome.[20] Prognosis is not well defined due to the small number of cases.


RET

BCR::RET[21] Fusion between BCR exon 4 with the RET exon 12 (5′ to 3′ orientation).[22] Aberrant expression of the kinase domain. t(10;22)(q11;q11)[23] Rare <5% D, P, T Yes (WHO)


Associated with chronic myelomonocytic leukemia and monocytic differentiation. Sensitive to Sorafenib, an inhibitor to tyrosine kinase activity.[24] The prognosis not well defined due to the limited number of cases.




RET

FGFR1OP::RET[25] Fusion between FGFR1OP exon 12 with RET exon 12 (5′ to 3′ orientation).[26] Abnormal expression of the tyrosine kinase domain. t(6;10)(q27;q11)[27] Rare <5% D, P, T Yes (WHO) Associated with chronic myelomonocytic leukemia and monocytic differentiation. The prognosis remains unclear due to the limited number of cases.

Individual Region Genomic Gain/Loss/LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE: No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE:

Common recurrent secondary finding for t(8;21) (add references).

EXAMPLE:

17

EXAMPLE: Amp EXAMPLE:

17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]

EXAMPLE:

ERBB2

EXAMPLE: D, P, T EXAMPLE:

Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.

Characteristic Chromosomal or Other Global Mutational Patterns

Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). EXAMPLE: Common (Oligodendroglioma) EXAMPLE: D, P
EXAMPLE:

Microsatellite instability - hypermutated

EXAMPLE: Common (Endometrial carcinoma) EXAMPLE: P, T

Gene Mutations (SNV/INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:EGFR


EXAMPLE: Exon 18-21 activating mutations EXAMPLE: Oncogene EXAMPLE: Common (lung cancer) EXAMPLE: T EXAMPLE: Yes (NCCN) EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
EXAMPLE: TP53; Variable LOF mutations


EXAMPLE: Variable LOF mutations EXAMPLE: Tumor Supressor Gene EXAMPLE: Common (breast cancer) EXAMPLE: P EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
EXAMPLE: BRAF; Activating mutations EXAMPLE: Activating mutations EXAMPLE: Oncogene EXAMPLE: Common (melanoma) EXAMPLE: T

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Put your text here

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program

Genetic Diagnostic Testing Methods

Put your text here (Instructions: Include recommended testing type(s) to identify the clinically significant genetic alterations.)

Familial Forms

Put your text here (Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.)

Additional Information

Put your text here

Links

Put a link here or anywhere appropriate in this page (Instructions: Highlight the text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the wiki page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "http://www." portion.)

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):


*Citation of this Page: “Myeloid/lymphoid neoplasms with other tyrosine kinase fusion genes”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 03/24/2025, https://ccga.io/index.php/HAEM5:Myeloid/lymphoid_neoplasms_with_other_tyrosine_kinase_fusion_genes.

  1. Carll, Timothy; et al. (2020-10-13). "Diagnosis and treatment of mixed phenotype (T-myeloid/lymphoid) acute leukemia with novel ETV6-FGFR2 rearrangement". Blood Advances. 4 (19): 4924–4928. doi:10.1182/bloodadvances.2019001282. ISSN 2473-9537. PMC 7556145 Check |pmc= value (help). PMID 33049052 Check |pmid= value (help).
  2. Katoh, Masaru (2019-02). "Fibroblast growth factor receptors as treatment targets in clinical oncology". Nature Reviews. Clinical Oncology. 16 (2): 105–122. doi:10.1038/s41571-018-0115-y. ISSN 1759-4782. PMID 30367139. Check date values in: |date= (help)
  3. Carll, Timothy; et al. (2020-10-13). "Diagnosis and treatment of mixed phenotype (T-myeloid/lymphoid) acute leukemia with novel ETV6-FGFR2 rearrangement". Blood Advances. 4 (19): 4924–4928. doi:10.1182/bloodadvances.2019001282. ISSN 2473-9537. PMC 7556145 Check |pmc= value (help). PMID 33049052 Check |pmid= value (help).
  4. Telford, N.; et al. (2016-04-08). "Myeloproliferative neoplasm with eosinophilia and T-lymphoblastic lymphoma with ETV6-LYN gene fusion". Blood Cancer Journal. 6 (4): e412. doi:10.1038/bcj.2016.11. ISSN 2044-5385. PMC 4855251. PMID 27058227.
  5. Ma, Edmond S. K.; et al. (2017-12). "Next-generation sequencing and molecular cytogenetic characterization of ETV6-LYN fusion due to chromosomes 1, 8 and 12 rearrangement in acute myeloid leukemia". Cancer Genetics. 218-219: 15–19. doi:10.1016/j.cancergen.2017.09.001. ISSN 2210-7762. PMID 29153093. Check date values in: |date= (help)
  6. Tanaka, H.; et al. (2010-01). "Identification of a novel TEL-Lyn fusion gene in primary myelofibrosis". Leukemia. 24 (1): 197–200. doi:10.1038/leu.2009.167. ISSN 1476-5551. PMID 19710703. Check date values in: |date= (help)
  7. Telford, N.; et al. (2016-04-08). "Myeloproliferative neoplasm with eosinophilia and T-lymphoblastic lymphoma with ETV6-LYN gene fusion". Blood Cancer Journal. 6 (4): e412. doi:10.1038/bcj.2016.11. ISSN 2044-5385. PMC 4855251. PMID 27058227.
  8. Reshmi, Shalini C.; et al. (2017-06-22). "Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group". Blood. 129 (25): 3352–3361. doi:10.1182/blood-2016-12-758979. ISSN 1528-0020. PMC 5482101. PMID 28408464.
  9. Roberts, Kathryn G.; et al. (2014-09-11). "Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia". The New England Journal of Medicine. 371 (11): 1005–1015. doi:10.1056/NEJMoa1403088. ISSN 1533-4406. PMC 4191900. PMID 25207766.
  10. Knezevich, S. R.; et al. (1998-11-15). "ETV6-NTRK3 gene fusions and trisomy 11 establish a histogenetic link between mesoblastic nephroma and congenital fibrosarcoma". Cancer Research. 58 (22): 5046–5048. ISSN 0008-5472. PMID 9823307.
  11. Tognon, Cristina; et al. (2002-11). "Expression of the ETV6-NTRK3 gene fusion as a primary event in human secretory breast carcinoma". Cancer Cell. 2 (5): 367–376. doi:10.1016/s1535-6108(02)00180-0. ISSN 1535-6108. PMID 12450792. Check date values in: |date= (help)
  12. Alessandri, A. J.; et al. (2001-10). "Absence of t(12;15) associated ETV6-NTRK3 fusion transcripts in pediatric acute leukemias". Medical and Pediatric Oncology. 37 (4): 415–416. doi:10.1002/mpo.1222. ISSN 0098-1532. PMID 11568911. Check date values in: |date= (help)
  13. Roberts, Kathryn G.; et al. (2014-09-11). "Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia". The New England Journal of Medicine. 371 (11): 1005–1015. doi:10.1056/NEJMoa1403088. ISSN 1533-4406. PMC 4191900. PMID 25207766.
  14. Röttgers, S.; et al. (2010-06). "ALK fusion genes in children with atypical myeloproliferative leukemia". Leukemia. 24 (6): 1197–1200. doi:10.1038/leu.2010.18. ISSN 1476-5551. PMID 20428197. Check date values in: |date= (help)
  15. Lim, Ji-Hun; et al. (2014). "RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia". Cancer Genetics. 207 (1–2): 40–45. doi:10.1016/j.cancergen.2013.12.003. ISSN 2210-7762. PMID 24613277.
  16. Lim, Ji-Hun; et al. (2014). "RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia". Cancer Genetics. 207 (1–2): 40–45. doi:10.1016/j.cancergen.2013.12.003. ISSN 2210-7762. PMID 24613277.
  17. Maesako, Yoshitomo; et al. (2014-02). "inv(2)(p23q13)/RAN-binding protein 2 (RANBP2)-ALK fusion gene in myeloid leukemia that developed in an elderly woman". International Journal of Hematology. 99 (2): 202–207. doi:10.1007/s12185-013-1482-x. ISSN 1865-3774. PMID 24307515. Check date values in: |date= (help)
  18. Röttgers, S.; et al. (2010-06). "ALK fusion genes in children with atypical myeloproliferative leukemia". Leukemia. 24 (6): 1197–1200. doi:10.1038/leu.2010.18. ISSN 1476-5551. PMID 20428197. Check date values in: |date= (help)
  19. Lim, Ji-Hun; et al. (2014). "RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia". Cancer Genetics. 207 (1–2): 40–45. doi:10.1016/j.cancergen.2013.12.003. ISSN 2210-7762. PMID 24613277.
  20. Lim, Ji-Hun; et al. (2014). "RANBP2-ALK fusion combined with monosomy 7 in acute myelomonocytic leukemia". Cancer Genetics. 207 (1–2): 40–45. doi:10.1016/j.cancergen.2013.12.003. ISSN 2210-7762. PMID 24613277.
  21. Ballerini, P.; et al. (2012-11). "RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation". Leukemia. 26 (11): 2384–2389. doi:10.1038/leu.2012.109. ISSN 1476-5551. PMID 22513837. Check date values in: |date= (help)
  22. Ballerini, P.; et al. (2012-11). "RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation". Leukemia. 26 (11): 2384–2389. doi:10.1038/leu.2012.109. ISSN 1476-5551. PMID 22513837. Check date values in: |date= (help)
  23. Ballerini, P.; et al. (2012-11). "RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation". Leukemia. 26 (11): 2384–2389. doi:10.1038/leu.2012.109. ISSN 1476-5551. PMID 22513837. Check date values in: |date= (help)
  24. Ballerini, P.; et al. (2012-11). "RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation". Leukemia. 26 (11): 2384–2389. doi:10.1038/leu.2012.109. ISSN 1476-5551. PMID 22513837. Check date values in: |date= (help)
  25. Ballerini, P.; et al. (2012-11). "RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation". Leukemia. 26 (11): 2384–2389. doi:10.1038/leu.2012.109. ISSN 1476-5551. PMID 22513837. Check date values in: |date= (help)
  26. Ballerini, P.; et al. (2012-11). "RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation". Leukemia. 26 (11): 2384–2389. doi:10.1038/leu.2012.109. ISSN 1476-5551. PMID 22513837. Check date values in: |date= (help)
  27. Ballerini, P.; et al. (2012-11). "RET fusion genes are associated with chronic myelomonocytic leukemia and enhance monocytic differentiation". Leukemia. 26 (11): 2384–2389. doi:10.1038/leu.2012.109. ISSN 1476-5551. PMID 22513837. Check date values in: |date= (help)