Difference between revisions of "HAEM5:Myeloid neoplasm post cytotoxic therapy"
[unchecked revision] | [checked revision] |
Bailey.Glen (talk | contribs) |
Bailey.Glen (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:Myeloid neoplasm post cytotoxic therapy}} | {{DISPLAYTITLE:Myeloid neoplasm post cytotoxic therapy}} | ||
− | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]] | + | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] |
{{Under Construction}} | {{Under Construction}} | ||
− | <blockquote class='blockedit'>{{Box-round|title= | + | <blockquote class='blockedit'>{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Therapy-Related Myeloid Neoplasms]]. |
Note: Need to check if content remains same | Note: Need to check if content remains same | ||
}}</blockquote> | }}</blockquote> | ||
+ | |||
+ | <span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span> | ||
+ | |||
==Primary Author(s)*== | ==Primary Author(s)*== | ||
Line 14: | Line 17: | ||
__TOC__ | __TOC__ | ||
− | == | + | ==WHO Classification of Disease== |
− | + | {| class="wikitable" | |
− | + | !Structure | |
− | + | !Disease | |
− | + | |- | |
− | + | |Book | |
− | + | |Haematolymphoid Tumours (5th ed.) | |
− | - | + | |- |
− | + | |Category | |
− | - | + | |Myeloid proliferations and neoplasms |
− | + | |- | |
− | - | + | |Family |
+ | |Myeloid neoplasms, secondary | ||
+ | |- | ||
+ | |Type | ||
+ | |Myeloid neoplasms and proliferations associated with antecedent or predisposing conditions | ||
+ | |- | ||
+ | |Subtype(s) | ||
+ | |Myeloid neoplasm post cytotoxic therapy | ||
+ | |} | ||
==Definition / Description of Disease== | ==Definition / Description of Disease== | ||
Line 56: | Line 67: | ||
==Clinical Features== | ==Clinical Features== | ||
− | Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span> | + | Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span> |
{| class="wikitable" | {| class="wikitable" | ||
|'''Signs and Symptoms''' | |'''Signs and Symptoms''' | ||
− | |EXAMPLE Asymptomatic (incidental finding on complete blood counts) | + | |<span class="blue-text">EXAMPLE:</span> Asymptomatic (incidental finding on complete blood counts) |
− | EXAMPLE B-symptoms (weight loss, fever, night sweats) | + | <span class="blue-text">EXAMPLE:</span> B-symptoms (weight loss, fever, night sweats) |
− | EXAMPLE Fatigue | + | <span class="blue-text">EXAMPLE:</span> Fatigue |
− | EXAMPLE Lymphadenopathy (uncommon) | + | <span class="blue-text">EXAMPLE:</span> Lymphadenopathy (uncommon) |
|- | |- | ||
|'''Laboratory Findings''' | |'''Laboratory Findings''' | ||
− | |EXAMPLE Cytopenias | + | |<span class="blue-text">EXAMPLE:</span> Cytopenias |
− | EXAMPLE Lymphocytosis (low level) | + | <span class="blue-text">EXAMPLE:</span> Lymphocytosis (low level) |
|} | |} | ||
Line 90: | Line 101: | ||
==Sites of Involvement== | ==Sites of Involvement== | ||
− | Put your text here <span style="color:#0070C0">(''Instruction: Indicate physical sites; | + | Put your text here <span style="color:#0070C0">(''Instruction: Indicate physical sites; <span class="blue-text">EXAMPLE:</span> nodal, extranodal, bone marrow'') </span> |
==Morphologic Features== | ==Morphologic Features== | ||
Line 112: | Line 123: | ||
==Immunophenotype== | ==Immunophenotype== | ||
− | Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span> | + | Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span> |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
Line 118: | Line 129: | ||
!Finding!!Marker | !Finding!!Marker | ||
|- | |- | ||
− | |Positive (universal)||EXAMPLE CD1 | + | |Positive (universal)||<span class="blue-text">EXAMPLE:</span> CD1 |
|- | |- | ||
− | |Positive (subset)||EXAMPLE CD2 | + | |Positive (subset)||<span class="blue-text">EXAMPLE:</span> CD2 |
|- | |- | ||
− | |Negative (universal)||EXAMPLE CD3 | + | |Negative (universal)||<span class="blue-text">EXAMPLE:</span> CD3 |
|- | |- | ||
− | |Negative (subset)||EXAMPLE CD4 | + | |Negative (subset)||<span class="blue-text">EXAMPLE:</span> CD4 |
|} | |} | ||
Line 151: | Line 162: | ||
!Notes | !Notes | ||
|- | |- | ||
− | |EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 20% (COSMIC) | + | |<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)||<span class="blue-text">EXAMPLE:</span> 3'ABL1 / 5'BCR||<span class="blue-text">EXAMPLE:</span> der(22)||<span class="blue-text">EXAMPLE:</span> 20% (COSMIC) |
− | EXAMPLE 30% (add reference) | + | <span class="blue-text">EXAMPLE:</span> 30% (add reference) |
|Yes | |Yes | ||
|No | |No | ||
|Yes | |Yes | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). | The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). | ||
Line 185: | Line 196: | ||
==Individual Region Genomic Gain / Loss / LOH== | ==Individual Region Genomic Gain / Loss / LOH== | ||
− | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.'') </span> | + | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.'') </span> |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
Line 195: | Line 206: | ||
!Notes | !Notes | ||
|- | |- | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
7 | 7 | ||
− | |EXAMPLE Loss | + | |<span class="blue-text">EXAMPLE:</span> Loss |
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
chr7:1- 159,335,973 [hg38] | chr7:1- 159,335,973 [hg38] | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
chr7 | chr7 | ||
Line 208: | Line 219: | ||
|Yes | |Yes | ||
|No | |No | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference). | Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference). | ||
|- | |- | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
8 | 8 | ||
− | |EXAMPLE Gain | + | |<span class="blue-text">EXAMPLE:</span> Gain |
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
chr8:1-145,138,636 [hg38] | chr8:1-145,138,636 [hg38] | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
chr8 | chr8 | ||
Line 225: | Line 236: | ||
|No | |No | ||
|No | |No | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
Common recurrent secondary finding for t(8;21) (add reference). | Common recurrent secondary finding for t(8;21) (add reference). | ||
Line 236: | Line 247: | ||
==Characteristic Chromosomal Patterns== | ==Characteristic Chromosomal Patterns== | ||
− | Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis'')</span> | + | Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.'')</span> |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
Line 246: | Line 257: | ||
!Notes | !Notes | ||
|- | |- | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
Co-deletion of 1p and 18q | Co-deletion of 1p and 18q | ||
Line 252: | Line 263: | ||
|No | |No | ||
|No | |No | ||
− | |EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> |
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | ||
Line 310: | Line 321: | ||
==Gene Mutations (SNV / INDEL)== | ==Gene Mutations (SNV / INDEL)== | ||
− | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable | + | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.'') </span> |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
Line 320: | Line 331: | ||
!Notes | !Notes | ||
|- | |- | ||
− | |EXAMPLE: TP53; Variable LOF mutations | + | |<span class="blue-text">EXAMPLE:</span> TP53; Variable LOF mutations |
− | EXAMPLE: | + | <span class="blue-text">EXAMPLE:</span> |
EGFR; Exon 20 mutations | EGFR; Exon 20 mutations | ||
− | EXAMPLE: BRAF; Activating mutations | + | <span class="blue-text">EXAMPLE:</span> BRAF; Activating mutations |
− | |EXAMPLE: TSG | + | |<span class="blue-text">EXAMPLE:</span> TSG |
− | |EXAMPLE: 20% (COSMIC) | + | |<span class="blue-text">EXAMPLE:</span> 20% (COSMIC) |
− | EXAMPLE: 30% (add Reference) | + | <span class="blue-text">EXAMPLE:</span> 30% (add Reference) |
− | |EXAMPLE: IDH1 R123H | + | |<span class="blue-text">EXAMPLE:</span> IDH1 R123H |
− | |EXAMPLE: EGFR amplification | + | |<span class="blue-text">EXAMPLE:</span> EGFR amplification |
| | | | ||
| | | | ||
| | | | ||
− | |EXAMPLE: Excludes hairy cell leukemia (HCL) (add reference). | + | |<span class="blue-text">EXAMPLE:</span> Excludes hairy cell leukemia (HCL) (add reference). |
<br /> | <br /> | ||
|} | |} | ||
Line 355: | Line 366: | ||
==Genes and Main Pathways Involved== | ==Genes and Main Pathways Involved== | ||
− | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table.'')</span> | + | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table. Do not delete table.'')</span> |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | !Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | ||
|- | |- | ||
− | |EXAMPLE: BRAF and MAP2K1; Activating mutations | + | |<span class="blue-text">EXAMPLE:</span> BRAF and MAP2K1; Activating mutations |
− | |EXAMPLE: MAPK signaling | + | |<span class="blue-text">EXAMPLE:</span> MAPK signaling |
− | |EXAMPLE: Increased cell growth and proliferation | + | |<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation |
|- | |- | ||
− | |EXAMPLE: CDKN2A; Inactivating mutations | + | |<span class="blue-text">EXAMPLE:</span> CDKN2A; Inactivating mutations |
− | |EXAMPLE: Cell cycle regulation | + | |<span class="blue-text">EXAMPLE:</span> Cell cycle regulation |
− | |EXAMPLE: Unregulated cell division | + | |<span class="blue-text">EXAMPLE:</span> Unregulated cell division |
|- | |- | ||
− | |EXAMPLE: KMT2C and ARID1A; Inactivating mutations | + | |<span class="blue-text">EXAMPLE:</span> KMT2C and ARID1A; Inactivating mutations |
− | |EXAMPLE: Histone modification, chromatin remodeling | + | |<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling |
− | |EXAMPLE: Abnormal gene expression program | + | |<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program |
|} | |} | ||
Latest revision as of 17:20, 6 September 2024
Haematolymphoid Tumours (WHO Classification, 5th ed.)
This page is under construction |
editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition ClassificationThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Therapy-Related Myeloid Neoplasms.Note: Need to check if content remains same
(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)
Primary Author(s)*
Shawn A. Silver, DO, Shashi Shetty, Ph.D.
WHO Classification of Disease
Structure | Disease |
---|---|
Book | Haematolymphoid Tumours (5th ed.) |
Category | Myeloid proliferations and neoplasms |
Family | Myeloid neoplasms, secondary |
Type | Myeloid neoplasms and proliferations associated with antecedent or predisposing conditions |
Subtype(s) | Myeloid neoplasm post cytotoxic therapy |
Definition / Description of Disease
-Therapy related disease that occurs as a complication of cytotoxic chemotherapy and/or radiation therapy administered for a prior neoplastic or non-neoplastic disorder.
-Excluded from this category are progression of MPN and primary MDS or MDS/MPN to AML as progression to AML is part of the natural history of the primary disease and is nearly impossible to distinguish.
Synonyms / Terminology
-Therapy related acute myeloid leukemia
-Alkylating agent related
-Epipodophyllotoxin related
-Therapy related acute myeloid leukemia, NOS
Epidemiology / Prevalence
-Therapy related myeloid neoplasms (tMN) account for 10-20% of all cases of AML, MDS, and MDS/MPN. The incidence of tMN amongst treated patients depends on the underlying disease and the treatment strategy (see table below).
-Data suggest that about 70% of patients have been treated previously for a solid tumor and 30% have been treated for a hematological neoplasm. Breast cancer and non-Hodgkin lymphoma account for the largest number of cases, respectively.
-Between 5-20% of cases occur following therapy for a non-neoplastic disorder.
-All age groups affected, but risk rises with age.
Clinical Features
Put your text here and fill in the table (Instruction: Can include references in the table. Do not delete table.)
Signs and Symptoms | EXAMPLE: Asymptomatic (incidental finding on complete blood counts)
EXAMPLE: B-symptoms (weight loss, fever, night sweats) EXAMPLE: Fatigue EXAMPLE: Lymphadenopathy (uncommon) |
Laboratory Findings | EXAMPLE: Cytopenias
EXAMPLE: Lymphocytosis (low level) |
editv4:Clinical FeaturesThe content below was from the old template. Please incorporate above.Two subsets of tMNs are generally recognized clinically:
More common, occurs 5-10 years after exposure to alkylating agents and/or ionizing radiation. Often present with an MDS with bone marrow failure and one or more cytopenias. Rare subset may present with tMDS/MPN or tAML.
- Commonly associated with unbalanced loss of gtenetic material, often involving chromosomes 5 and/or 7, as well as complex karyotypes and mutations or loss of TP53.
- Accounts for 20-30% of cases and has a shorter latent period of about 1-5 years. Usually follows treatment with DNA topoisomerase II. Most cases present with overt AML and often associated with a balanced chromosomal translocation.
Sites of Involvement
Bone marrow and blood. Initial presentation as extramedullary myeloid sarcoma has been reported.
Sites of Involvement
Put your text here (Instruction: Indicate physical sites; EXAMPLE: nodal, extranodal, bone marrow)
Morphologic Features
-Most patients present with MDS or acute leukemia associated with multi-lineage dysplasia.
-Peripheral blood shows one or more cytopenias.
-Anemia is almost always present and RBC morphology is usually macrocytic and poikilocytic.
-neutrophils show abnormal nuclear segmentation and hypogranulation.
-basophilia is often present.
-Bone marrow may be hypo/hyper/or normocellular. Reticulin fibrosis is common.
-Dysgranulopoiesis and dyserythropoiesis is common.
-Dysplastic megakaryocytes with non lobated or hypolobated neuclie or widely separated lobes are common.
Immunophenotype
Put your text here and fill in the table (Instruction: Can include references in the table. Do not delete table.)
Finding | Marker |
---|---|
Positive (universal) | EXAMPLE: CD1 |
Positive (subset) | EXAMPLE: CD2 |
Negative (universal) | EXAMPLE: CD3 |
Negative (subset) | EXAMPLE: CD4 |
editv4:ImmunophenotypeThe content below was from the old template. Please incorporate above.-Immunophenotypic findings reflect the heterogeneity of the underlying morphology.
-Blasts are generally CD34+ and express pan-myeloid antigens: CD13, CD 33, and MPO (MPO may be downregulated).
Additional Description:
-p53 positive cells in bone marrow biopsies have been demonstrated to correlate well with TP53 mutations and with a poor prognosis.
Chromosomal Rearrangements (Gene Fusions)
Put your text here and fill in the table
Chromosomal Rearrangement | Genes in Fusion (5’ or 3’ Segments) | Pathogenic Derivative | Prevalence | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
EXAMPLE: t(9;22)(q34;q11.2) | EXAMPLE: 3'ABL1 / 5'BCR | EXAMPLE: der(22) | EXAMPLE: 20% (COSMIC)
EXAMPLE: 30% (add reference) |
Yes | No | Yes | EXAMPLE:
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). |
editv4:Chromosomal Rearrangements (Gene Fusions)The content below was from the old template. Please incorporate above.NA
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).Please incorporate this section into the relevant tables found in:
- Chromosomal Rearrangements (Gene Fusions)
- Individual Region Genomic Gain/Loss/LOH
- Characteristic Chromosomal Patterns
- Gene Mutations (SNV/INDEL)
Prognosis is generally poor, common reported 5 year survival rates are <10%.
Cases with abnormalities in chromosome 5 and/or 7, TP53 mutations, and a complex karyotype have a particularly poor outcome with mean survival time of <1 year.
Cases with balanced chromosomal translocations generally have a better prognosis, however, such cases (except those with t(15;17), inv(16), or t(16;16)) have a shorter median survival time than their de novo counterparts.
Patients with therapy related APL with PML-RARA should be managed with the same urgency as de novo APL.
Individual Region Genomic Gain / Loss / LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.)
Chr # | Gain / Loss / Amp / LOH | Minimal Region Genomic Coordinates [Genome Build] | Minimal Region Cytoband | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|
EXAMPLE:
7 |
EXAMPLE: Loss | EXAMPLE:
chr7:1- 159,335,973 [hg38] |
EXAMPLE:
chr7 |
Yes | Yes | No | EXAMPLE:
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference). |
EXAMPLE:
8 |
EXAMPLE: Gain | EXAMPLE:
chr8:1-145,138,636 [hg38] |
EXAMPLE:
chr8 |
No | No | No | EXAMPLE:
Common recurrent secondary finding for t(8;21) (add reference). |
editv4:Genomic Gain/Loss/LOHThe content below was from the old template. Please incorporate above.NA
Characteristic Chromosomal Patterns
Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.)
Chromosomal Pattern | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|
EXAMPLE:
Co-deletion of 1p and 18q |
Yes | No | No | EXAMPLE:
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). |
editv4:Characteristic Chromosomal Aberrations / PatternsThe content below was from the old template. Please incorporate above.-Leukemic cells of >90% of patients with tMN show an abnormal karyotype.
A) Approximately 70% of patients harbor unbalanced chromosomal aberrations, most commonly:
Loss of chromosome 7 or del(7q)
Partial loss of 5q or t(5q)
Loss of 5q is associated with:
del(13q)
del(20q)
del(11q)
del(3p)
Loss of 17p or chromosome 17
Loss of chromosome 18 or 21
Gain of chromosome 8
*Up to 80% of patients with del(5q) have mutations or deletion of TP53 as a result of abnormalities of 17p.
These changes are associated with: long latent period, preceding myelodysplastic phase or tAML with dysplastic features, and alkylating agent and/or radiation therapy.
B) 20-30% of patients have balance translocations that involve rearrangements of 11q23.3, including:
t(9;11)(p21.3;q23.3)
t(11;19)(q23.3;p13.1)
21q22.1
t(8;21)(q22;22.1)
t(3;21)(q26.2q22.1)
t(15;17)(q24.1;q21.1)
inv(16)(p13.1q22)
These translocations are associated with: short latent period, present as tAML without a preceding myelodysplastic phase, prior topoisomerase II inhibitor therapy or radiation alone.
A small percentage of tMN patients have a reported normal karyotype.
Gene Mutations (SNV / INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.)
Gene; Genetic Alteration | Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) | Prevalence (COSMIC / TCGA / Other) | Concomitant Mutations | Mutually Exclusive Mutations | Diagnostic Significance (Yes, No or Unknown) | Prognostic Significance (Yes, No or Unknown) | Therapeutic Significance (Yes, No or Unknown) | Notes |
---|---|---|---|---|---|---|---|---|
EXAMPLE: TP53; Variable LOF mutations
EXAMPLE: EGFR; Exon 20 mutations EXAMPLE: BRAF; Activating mutations |
EXAMPLE: TSG | EXAMPLE: 20% (COSMIC)
EXAMPLE: 30% (add Reference) |
EXAMPLE: IDH1 R123H | EXAMPLE: EGFR amplification | EXAMPLE: Excludes hairy cell leukemia (HCL) (add reference).
|
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
editv4:Gene Mutations (SNV/INDEL)The content below was from the old template. Please incorporate above.NA
Other Mutations
NA
Epigenomic Alterations
Unknown
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Can include references in the table. Do not delete table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
editv4:Genes and Main Pathways InvolvedThe content below was from the old template. Please incorporate above.Thought to be the consequence of mutation events in hematopoietic stem cells induced by cytotoxic therapy or selection of a myeloid clone with a mutator phenotype. Only a small proportion of patients treated with identical protocols develop tMN, suggesting that some individuals may have predisopistion due to mutations in DNA damage sensing or prepair genes, or polymorphisms in genes that affect drug metabolism, transport, or repair.
Genetic Diagnostic Testing Methods
Diagnosis is typically made by in the same fashion as the de novo counterparts with the added history of prior cytotoxic chemotherapy and/or radiation.
Familial Forms
Unknown
Additional Information
Agents implicated in therapy related myeloid neoplasms:
Alkylating Agents: Melphalan, cyclophosphamide, nitrogen mustard, chlorambucil, busulfan, carboplatin, cisplatin, dacarbazine, procarbazine, carmustine, mitomycin C, thiotepa, Iomustine.
Ionizing Radiation Therapy: Large fields containing active bone marrow.
Topoisomerase II Inhibitors: Etoposide, teniposide, doxorubicin, daunorubicin, mitoxantrone, amsacrine, actinomycin.
Others: Thiopurines, mycophenolate mofetil, fludarabine, vincristine, vinblastine, vindesine, paclitaxel, docetaxel.
-Use of adjuvant hematopoietic growth factors will typically increase the risk of developing tMN.
Links
NA
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome. *Citation of this Page: “Myeloid neoplasm post cytotoxic therapy”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 09/6/2024, https://ccga.io/index.php/HAEM5:Myeloid_neoplasm_post_cytotoxic_therapy.