Difference between revisions of "BRST5:Tall cell carcinoma with reversed polarity"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][checked revision]
(added gene diagram)
(6 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<span style="color:#0070C0">(''General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see'' </span><u>''[[Author_Instructions]]''</u><span style="color:#0070C0"> ''and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)''</span>
+
{{DISPLAYTITLE:Tall cell carcinoma with reversed polarity}}
 +
 
 +
[[BRST5:Table_of_Contents|Breast Tumours (WHO Classification, 5th ed.)]]
 
==Primary Author(s)*==
 
==Primary Author(s)*==
Put your text here<span style="color:#0070C0"> (''<span class="blue-text">EXAMPLE:</span>'' Jane Smith, PhD) </span>
+
H. Evin Gulbahce, MD, MSCI, University of Utah, UT, USA <span style="color:#0070C0"> </span>
 
==WHO Classification of Disease==
 
==WHO Classification of Disease==
<span style="color:#0070C0">(''Instructions: This table’s content from the WHO book will be <u>autocompleted</u>.'')</span>
+
 
 
{| class="wikitable"
 
{| class="wikitable"
 
!Structure
 
!Structure
Line 9: Line 11:
 
|-
 
|-
 
|Book
 
|Book
|
+
|Breast Tumours (5th ed.)
 
|-
 
|-
 
|Category
 
|Category
|
+
|Epithelial tumours of the breast
 
|-
 
|-
 
|Family
 
|Family
|
+
|Rare and salivary gland-type tumours: Introduction
 
|-
 
|-
 
|Type
 
|Type
|
+
|Tall cell carcinoma with reversed polarity
 
|-
 
|-
 
|Subtype(s)
 
|Subtype(s)
|
+
|N/A
 
|}
 
|}
 +
 
==WHO Essential and Desirable Genetic Diagnostic Criteria==
 
==WHO Essential and Desirable Genetic Diagnostic Criteria==
<span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span>
 
 
{| class="wikitable"
 
{| class="wikitable"
 
|+
 
|+
Line 31: Line 33:
 
|-
 
|-
 
|WHO Desirable Criteria (Genetics)*
 
|WHO Desirable Criteria (Genetics)*
|
+
|''IDH2'' mutation
 
|-
 
|-
 
|Other Classification
 
|Other Classification
Line 38: Line 40:
 
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
 
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
 
==Related Terminology==
 
==Related Terminology==
<span style="color:#0070C0">(''Instructions: The table will have the related terminology from the WHO <u>autocompleted</u>.)''</span>
 
 
{| class="wikitable"
 
{| class="wikitable"
 
|+
 
|+
Line 49: Line 50:
  
 
==Gene Rearrangements==
 
==Gene Rearrangements==
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
+
<br />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 57: Line 58:
 
!Established Clinical Significance Per Guidelines - Yes or No (Source)
 
!Established Clinical Significance Per Guidelines - Yes or No (Source)
 
!Clinical Relevance Details/Other Notes
 
!Clinical Relevance Details/Other Notes
|-
 
|<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)
 
|<span class="blue-text">EXAMPLE:</span> Common (CML)
 
|<span class="blue-text">EXAMPLE:</span> D, P, T
 
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN)
 
|<span class="blue-text">EXAMPLE:</span>
 
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).
 
|-
 
|<span class="blue-text">EXAMPLE:</span> ''CIC''
 
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4''
 
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''.
 
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13)
 
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma)
 
|<span class="blue-text">EXAMPLE:</span> D
 
|
 
|<span class="blue-text">EXAMPLE:</span>
 
 
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
 
|-
 
|<span class="blue-text">EXAMPLE:</span> ''ALK''
 
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK''
 
 
 
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1''
 
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18.
 
|<span class="blue-text">EXAMPLE:</span> N/A
 
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma)
 
|<span class="blue-text">EXAMPLE:</span> T
 
|
 
|<span class="blue-text">EXAMPLE:</span>
 
 
Both balanced and unbalanced forms are observed by FISH (add references).
 
|-
 
|<span class="blue-text">EXAMPLE:</span> ''ABL1''
 
|<span class="blue-text">EXAMPLE:</span> N/A
 
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways.
 
|<span class="blue-text">EXAMPLE:</span> N/A
 
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma)
 
|<span class="blue-text">EXAMPLE:</span> D, P, T
 
|
 
|
 
 
|-
 
|-
 
|
 
|
Line 108: Line 68:
 
|
 
|
 
|}
 
|}
 +
 +
 
==Individual Region Genomic Gain/Loss/LOH==
 
==Individual Region Genomic Gain/Loss/LOH==
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span>
+
<br />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 116: Line 78:
 
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
 
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
 
!'''Clinical Relevance Details/Other Notes'''
 
!'''Clinical Relevance Details/Other Notes'''
|-
 
|<span class="blue-text">EXAMPLE:</span>
 
7
 
|<span class="blue-text">EXAMPLE:</span> Loss
 
|<span class="blue-text">EXAMPLE:</span>
 
chr7
 
|<span class="blue-text">EXAMPLE:</span>
 
Unknown
 
|<span class="blue-text">EXAMPLE:</span> D, P
 
|<span class="blue-text">EXAMPLE:</span> No
 
|<span class="blue-text">EXAMPLE:</span>
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).
 
|-
 
|<span class="blue-text">EXAMPLE:</span>
 
8
 
|<span class="blue-text">EXAMPLE:</span> Gain
 
|<span class="blue-text">EXAMPLE:</span>
 
chr8
 
|<span class="blue-text">EXAMPLE:</span>
 
Unknown
 
|<span class="blue-text">EXAMPLE:</span> D, P
 
|
 
|<span class="blue-text">EXAMPLE:</span>
 
Common recurrent secondary finding for t(8;21) (add references).
 
|-
 
|<span class="blue-text">EXAMPLE:</span>
 
17
 
|<span class="blue-text">EXAMPLE:</span> Amp
 
|<span class="blue-text">EXAMPLE:</span>
 
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]
 
|<span class="blue-text">EXAMPLE:</span>
 
''ERBB2''
 
|<span class="blue-text">EXAMPLE:</span> D, P, T
 
|
 
|<span class="blue-text">EXAMPLE:</span>
 
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.
 
 
|-
 
|-
 
|
 
|
Line 161: Line 87:
 
|
 
|
 
|}
 
|}
 +
 +
 
==Characteristic Chromosomal or Other Global Mutational Patterns==
 
==Characteristic Chromosomal or Other Global Mutational Patterns==
Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
+
<br />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 172: Line 100:
 
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
 
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
 
!'''Clinical Relevance Details/Other Notes'''
 
!'''Clinical Relevance Details/Other Notes'''
|-
 
|<span class="blue-text">EXAMPLE:</span>
 
Co-deletion of 1p and 18q
 
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
 
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma)
 
|<span class="blue-text">EXAMPLE:</span> D, P
 
|
 
|
 
|-
 
|<span class="blue-text">EXAMPLE:</span>
 
Microsatellite instability - hypermutated
 
|
 
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma)
 
|<span class="blue-text">EXAMPLE:</span> P, T
 
|
 
|
 
 
|-
 
|-
 
|
 
|
Line 196: Line 108:
 
|
 
|
 
|}
 
|}
 +
 +
 
==Gene Mutations (SNV/INDEL)==
 
==Gene Mutations (SNV/INDEL)==
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span>
+
[[File:IDH2 with protein domain and hotspots.png|left|thumb|769x769px|Diagram of the ''IDH2'' gene (NM_002168) showing the mutational hotspot R172 within the isocitrate dehydrogenase functional domain. Missense mutations at codon 172 result in a substitution for arginine (R) with a different amino acid. Image prepared with the aid of ProteinPaint {26711108} and BioRender software <nowiki>[https://BioRender.com, accessed on 11/4/2025]</nowiki>.]]
 +
<br />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 206: Line 121:
 
!'''Clinical Relevance Details/Other Notes'''
 
!'''Clinical Relevance Details/Other Notes'''
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span>''EGFR''
+
|''IDH2''
 
+
|codon 172 mutations
<br />
+
|Oncogene
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations
+
|Common
|<span class="blue-text">EXAMPLE:</span> Oncogene
+
|D
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer)
+
|Yes (WHO)
|<span class="blue-text">EXAMPLE:</span> T
+
|Majority are R172S, R172T; others include R172G, R172W, R172I<ref>{{Cite journal|last=Alsadoun|first=Nadjla|last2=MacGrogan|first2=Gaëtan|last3=Truntzer|first3=Caroline|last4=Lacroix-Triki|first4=Magali|last5=Bedgedjian|first5=Isabelle|last6=Koeb|first6=Marie-Hélène|last7=El Alam|first7=Elsy|last8=Medioni|first8=Dan|last9=Parent|first9=Michel|date=2018-09|title=Solid papillary carcinoma with reverse polarity of the breast harbors specific morphologic, immunohistochemical and molecular profile in comparison with other benign or malignant papillary lesions of the breast: a comparative study of 9 additional cases|url=https://pubmed.ncbi.nlm.nih.gov/29785016|journal=Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc|volume=31|issue=9|pages=1367–1380|doi=10.1038/s41379-018-0047-1|issn=1530-0285|pmid=29785016}}</ref><ref>{{Cite journal|last=Chiang|first=Sarah|last2=Weigelt|first2=Britta|last3=Wen|first3=Huei-Chi|last4=Pareja|first4=Fresia|last5=Raghavendra|first5=Ashwini|last6=Martelotto|first6=Luciano G.|last7=Burke|first7=Kathleen A.|last8=Basili|first8=Thais|last9=Li|first9=Anqi|date=2016-12-15|title=IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity|url=https://pubmed.ncbi.nlm.nih.gov/27913435|journal=Cancer Research|volume=76|issue=24|pages=7118–7129|doi=10.1158/0008-5472.CAN-16-0298|issn=1538-7445|pmc=5502804|pmid=27913435}}</ref><ref name=":0">{{Cite journal|last=Lozada|first=John R.|last2=Basili|first2=Thais|last3=Pareja|first3=Fresia|last4=Alemar|first4=Barbara|last5=Paula|first5=Arnaud Da Cruz|last6=Gularte-Merida|first6=Rodrigo|last7=Giri|first7=Dilip D.|last8=Querzoli|first8=Patricia|last9=Cserni|first9=Gabor|date=2018-08|title=Solid papillary breast carcinomas resembling the tall cell variant of papillary thyroid neoplasms (solid papillary carcinomas with reverse polarity) harbour recurrent mutations affecting IDH2 and PIK3CA: a validation cohort|url=https://pubmed.ncbi.nlm.nih.gov/29603332|journal=Histopathology|volume=73|issue=2|pages=339–344|doi=10.1111/his.13522|issn=1365-2559|pmc=6783257|pmid=29603332}}</ref><ref>{{Cite journal|last=Zhong|first=Elaine|last2=Scognamiglio|first2=Theresa|last3=D'Alfonso|first3=Timothy|last4=Song|first4=Wei|last5=Tran|first5=Hung|last6=Baek|first6=Inji|last7=Hoda|first7=Syed A.|date=2019-04|title=Breast Tumor Resembling the Tall Cell Variant of Papillary Thyroid Carcinoma: Molecular Characterization by Next-Generation Sequencing and Histopathological Comparison With Tall Cell Papillary Carcinoma of Thyroid|url=https://pubmed.ncbi.nlm.nih.gov/30227763|journal=International Journal of Surgical Pathology|volume=27|issue=2|pages=134–141|doi=10.1177/1066896918800779|issn=1940-2465|pmid=30227763}}</ref>
|<span class="blue-text">EXAMPLE:</span> Yes (NCCN)
 
|<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
 
|-
 
|<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations
 
<br />
 
|<span class="blue-text">EXAMPLE:</span> Variable LOF mutations
 
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene
 
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer)
 
|<span class="blue-text">EXAMPLE:</span> P
 
|
 
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
 
|-
 
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations
 
|<span class="blue-text">EXAMPLE:</span> Activating mutations
 
|<span class="blue-text">EXAMPLE:</span> Oncogene
 
|<span class="blue-text">EXAMPLE:</span> Common (melanoma)
 
|<span class="blue-text">EXAMPLE:</span> T
 
|
 
|
 
 
|-
 
|-
 +
|''PIK3CA''
 
|
 
|
|
+
|Oncogene
|
+
|Common
|
+
|T
|
+
|Yes (NCCN)
|
+
|Co-mutated with ''IDH2''; hotspots include H1047R, E542K, E545K<ref name=":0" />
|
 
 
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
 
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
 +
 
==Epigenomic Alterations==
 
==Epigenomic Alterations==
Put your text here
+
 
 +
 
 
==Genes and Main Pathways Involved==
 
==Genes and Main Pathways Involved==
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Please include references throughout the table. Do not delete the table.)''</span>
+
<br />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations
+
|''IDH2''
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
+
|Carbon metabolism; carboxylic acid (Krebs) cycle
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
+
|Increased conversion of α-ketoglutarate (α-KG) to the oncometabolite ''R''-2-hydroxylglutarate (''R''-2-HG). Increased levels of 2-HG result in hypermethylation of epigenetic targets and a subsequent block in cellular differentiation. Due to widespread hypermethylation, there is increased H3K27me3 nuclear immunoreactivity in tumors harboring ''IDH2'' R172 mutations.
|-
 
|<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations
 
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
 
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
 
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations
+
|''PIK3CA''
|<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling
+
|PI3K/AKT/mTOR pathway
|<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program
+
|Three most common PIK3CA mutations are H1047R, E542K, and E545K; PIK3CA mutations induce hyperactivation of the alpha isoform of the catalytic subunit (p110α) of class IA PI3K kinase. Mutations are often co-occurring with other drivers in ER-positive breast cancers and are associated with endocrine resistance. PIK3CA mutations are targetable with the PI3K inhibitor alpelisib in ER positive breast cancers; however, tall cell carcinoma with reverse polarity is usually ER negative.
|-
 
|
 
|
 
|
 
 
|}
 
|}
 +
 +
 
==Genetic Diagnostic Testing Methods==
 
==Genetic Diagnostic Testing Methods==
Put your text here <span style="color:#0070C0">(''Instructions: Include recommended testing type(s) to identify the clinically significant genetic alterations.'')</span>
+
Next generation sequencing (NGS); immunohistochemistry with monoclonal antibodies against ''IDH2'' mutant codon R172S (monoclonal antibody clone 11C8B1 is reactive against R172S or R172T)<ref>{{Cite journal|last=Pareja|first=Fresia|last2=da Silva|first2=Edaise M.|last3=Frosina|first3=Denise|last4=Geyer|first4=Felipe C.|last5=Lozada|first5=John R.|last6=Basili|first6=Thais|last7=Da Cruz Paula|first7=Arnaud|last8=Zhong|first8=Elaine|last9=Derakhshan|first9=Fatemeh|date=2020-06|title=Immunohistochemical analysis of IDH2 R172 hotspot mutations in breast papillary neoplasms: applications in the diagnosis of tall cell carcinoma with reverse polarity|url=https://pubmed.ncbi.nlm.nih.gov/31896809|journal=Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc|volume=33|issue=6|pages=1056–1064|doi=10.1038/s41379-019-0442-2|issn=1530-0285|pmc=7286791|pmid=31896809}}</ref>; pyrosequencing; Sanger sequencing; PCR with allele detection (examples include PCR with melting curve analysis, or PCR with use of allele-specific probes); allele-specific PCR; single base extension.  
 
==Familial Forms==
 
==Familial Forms==
Put your text here <span style="color:#0070C0">(''Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.'') </span>
+
None
 
==Additional Information==
 
==Additional Information==
Put your text here
+
<br />
 
==Links==
 
==Links==
Put a link here or anywhere appropriate in this page <span style="color:#0070C0">(''Instructions: Highlight the text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the wiki page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "<nowiki>http://www</nowiki>." portion.'')</span>
+
<nowiki>https://www.pathologyoutlines.com/topic/breastmalignantspcrp.html</nowiki>
==References==
+
 
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span>
+
<br />
 
==Notes==
 
==Notes==
 +
 +
 
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.  
 
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.  
  
Prior Author(s):  
+
Prior Author(s):
 +
 
 +
<br />
 +
==References==
 +
 
 +
 
 +
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span>
 +
<references />
 +
<nowiki>*</nowiki>''Citation of this Page'': “Tall cell carcinoma with reversed polarity”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/BRST5:Tall cell carcinoma with reversed polarity</nowiki>.
 +
[[Category:BRST5]]
 +
[[Category:DISEASE]]
 +
[[Category:Diseases T]]

Revision as of 11:38, 16 April 2025


Breast Tumours (WHO Classification, 5th ed.)

Primary Author(s)*

H. Evin Gulbahce, MD, MSCI, University of Utah, UT, USA

WHO Classification of Disease

Structure Disease
Book Breast Tumours (5th ed.)
Category Epithelial tumours of the breast
Family Rare and salivary gland-type tumours: Introduction
Type Tall cell carcinoma with reversed polarity
Subtype(s) N/A

WHO Essential and Desirable Genetic Diagnostic Criteria

WHO Essential Criteria (Genetics)*
WHO Desirable Criteria (Genetics)* IDH2 mutation
Other Classification

*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.

Related Terminology

Acceptable
Not Recommended

Gene Rearrangements


Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes


Individual Region Genomic Gain/Loss/LOH


Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes


Characteristic Chromosomal or Other Global Mutational Patterns


Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes


Gene Mutations (SNV/INDEL)

Diagram of the IDH2 gene (NM_002168) showing the mutational hotspot R172 within the isocitrate dehydrogenase functional domain. Missense mutations at codon 172 result in a substitution for arginine (R) with a different amino acid. Image prepared with the aid of ProteinPaint {26711108} and BioRender software [https://BioRender.com, accessed on 11/4/2025].


Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
IDH2 codon 172 mutations Oncogene Common D Yes (WHO) Majority are R172S, R172T; others include R172G, R172W, R172I[1][2][3][4]
PIK3CA Oncogene Common T Yes (NCCN) Co-mutated with IDH2; hotspots include H1047R, E542K, E545K[3]

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Genes and Main Pathways Involved


Gene; Genetic Alteration Pathway Pathophysiologic Outcome
IDH2 Carbon metabolism; carboxylic acid (Krebs) cycle Increased conversion of α-ketoglutarate (α-KG) to the oncometabolite R-2-hydroxylglutarate (R-2-HG). Increased levels of 2-HG result in hypermethylation of epigenetic targets and a subsequent block in cellular differentiation. Due to widespread hypermethylation, there is increased H3K27me3 nuclear immunoreactivity in tumors harboring IDH2 R172 mutations.
PIK3CA PI3K/AKT/mTOR pathway Three most common PIK3CA mutations are H1047R, E542K, and E545K; PIK3CA mutations induce hyperactivation of the alpha isoform of the catalytic subunit (p110α) of class IA PI3K kinase. Mutations are often co-occurring with other drivers in ER-positive breast cancers and are associated with endocrine resistance. PIK3CA mutations are targetable with the PI3K inhibitor alpelisib in ER positive breast cancers; however, tall cell carcinoma with reverse polarity is usually ER negative.


Genetic Diagnostic Testing Methods

Next generation sequencing (NGS); immunohistochemistry with monoclonal antibodies against IDH2 mutant codon R172S (monoclonal antibody clone 11C8B1 is reactive against R172S or R172T)[5]; pyrosequencing; Sanger sequencing; PCR with allele detection (examples include PCR with melting curve analysis, or PCR with use of allele-specific probes); allele-specific PCR; single base extension.  

Familial Forms

None

Additional Information


Links

https://www.pathologyoutlines.com/topic/breastmalignantspcrp.html


Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):


References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

  1. Alsadoun, Nadjla; et al. (2018-09). "Solid papillary carcinoma with reverse polarity of the breast harbors specific morphologic, immunohistochemical and molecular profile in comparison with other benign or malignant papillary lesions of the breast: a comparative study of 9 additional cases". Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 31 (9): 1367–1380. doi:10.1038/s41379-018-0047-1. ISSN 1530-0285. PMID 29785016. Check date values in: |date= (help)
  2. Chiang, Sarah; et al. (2016-12-15). "IDH2 Mutations Define a Unique Subtype of Breast Cancer with Altered Nuclear Polarity". Cancer Research. 76 (24): 7118–7129. doi:10.1158/0008-5472.CAN-16-0298. ISSN 1538-7445. PMC 5502804. PMID 27913435.
  3. Jump up to: 3.0 3.1 Lozada, John R.; et al. (2018-08). "Solid papillary breast carcinomas resembling the tall cell variant of papillary thyroid neoplasms (solid papillary carcinomas with reverse polarity) harbour recurrent mutations affecting IDH2 and PIK3CA: a validation cohort". Histopathology. 73 (2): 339–344. doi:10.1111/his.13522. ISSN 1365-2559. PMC 6783257. PMID 29603332. Check date values in: |date= (help)
  4. Zhong, Elaine; et al. (2019-04). "Breast Tumor Resembling the Tall Cell Variant of Papillary Thyroid Carcinoma: Molecular Characterization by Next-Generation Sequencing and Histopathological Comparison With Tall Cell Papillary Carcinoma of Thyroid". International Journal of Surgical Pathology. 27 (2): 134–141. doi:10.1177/1066896918800779. ISSN 1940-2465. PMID 30227763. Check date values in: |date= (help)
  5. Pareja, Fresia; et al. (2020-06). "Immunohistochemical analysis of IDH2 R172 hotspot mutations in breast papillary neoplasms: applications in the diagnosis of tall cell carcinoma with reverse polarity". Modern Pathology: An Official Journal of the United States and Canadian Academy of Pathology, Inc. 33 (6): 1056–1064. doi:10.1038/s41379-019-0442-2. ISSN 1530-0285. PMC 7286791 Check |pmc= value (help). PMID 31896809. Check date values in: |date= (help)

*Citation of this Page: “Tall cell carcinoma with reversed polarity”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 04/16/2025, https://ccga.io/index.php/BRST5:Tall cell carcinoma with reversed polarity.