Difference between revisions of "HAEM5:Splenic marginal zone lymphoma"
[unchecked revision] | [unchecked revision] |
Bailey.Glen (talk | contribs) (Created page with "{{DISPLAYTITLE:Splenic marginal zone lymphoma}} Haematolymphoid Tumours (5th ed.) {{Under Construction}} <blockquote class='blockedit'>{{Box-roun...") |
Bailey.Glen (talk | contribs) |
||
(9 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
{{DISPLAYTITLE:Splenic marginal zone lymphoma}} | {{DISPLAYTITLE:Splenic marginal zone lymphoma}} | ||
− | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]] | + | [[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]] |
{{Under Construction}} | {{Under Construction}} | ||
− | <blockquote class= | + | <blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Splenic Marginal Zone Lymphoma]]. |
}}</blockquote> | }}</blockquote> | ||
+ | |||
+ | <span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span> | ||
+ | |||
==Primary Author(s)*== | ==Primary Author(s)*== | ||
*Snehal Patel, MD, PhD | *Snehal Patel, MD, PhD | ||
− | |||
− | == | + | ==WHO Classification of Disease== |
− | + | {| class="wikitable" | |
+ | !Structure | ||
+ | !Disease | ||
+ | |- | ||
+ | |Book | ||
+ | |Haematolymphoid Tumours (5th ed.) | ||
+ | |- | ||
+ | |Category | ||
+ | |B-cell lymphoid proliferations and lymphomas | ||
+ | |- | ||
+ | |Family | ||
+ | |Mature B-cell neoplasms | ||
+ | |- | ||
+ | |Type | ||
+ | |Splenic B-cell lymphomas and leukaemias | ||
+ | |- | ||
+ | |Subtype(s) | ||
+ | |Splenic marginal zone lymphoma | ||
+ | |} | ||
− | == | + | ==WHO Essential and Desirable Genetic Diagnostic Criteria== |
− | + | <span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span> | |
− | + | {| class="wikitable" | |
− | + | |+ | |
− | + | |WHO Essential Criteria (Genetics)* | |
− | + | | | |
− | + | |- | |
− | + | |WHO Desirable Criteria (Genetics)* | |
− | + | | | |
− | * | + | |- |
− | + | |Other Classification | |
− | + | | | |
− | + | |} | |
− | + | <nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>]. | |
− | * | + | ==Related Terminology== |
− | + | <span style="color:#0070C0">(''Instructions: The table will have the related terminology from the WHO <u>autocompleted</u>.)''</span> | |
− | |||
− | |||
− | |||
− | |||
− | * | ||
− | |||
− | |||
− | |||
− | |||
− | < | ||
− | == | ||
− | |||
− | |||
{| class="wikitable" | {| class="wikitable" | ||
− | | | + | |+ |
− | | | + | |Acceptable |
− | + | | | |
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |Not Recommended |
− | | | + | | |
− | |||
− | |||
|} | |} | ||
− | + | ==Gene Rearrangements== | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
+ | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
− | ! | + | !Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s) |
+ | !Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | ||
+ | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | ||
+ | !Established Clinical Significance Per Guidelines - Yes or No (Source) | ||
+ | !Clinical Relevance Details/Other Notes | ||
|- | |- | ||
− | | | + | |<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2) |
+ | |<span class="blue-text">EXAMPLE:</span> Common (CML) | ||
+ | |<span class="blue-text">EXAMPLE:</span> D, P, T | ||
+ | |<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN) | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). | ||
|- | |- | ||
− | | | + | |<span class="blue-text">EXAMPLE:</span> ''CIC'' |
+ | |<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4'' | ||
+ | |<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''. | ||
+ | |<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13) | ||
+ | |<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma) | ||
+ | |<span class="blue-text">EXAMPLE:</span> D | ||
+ | | | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | |||
+ | ''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | ||
|- | |- | ||
− | | | + | |<span class="blue-text">EXAMPLE:</span> ''ALK'' |
− | | | + | |<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK'' |
− | < | + | Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1'' |
− | + | |<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18. | |
− | + | |<span class="blue-text">EXAMPLE:</span> N/A | |
− | + | |<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma) | |
+ | |<span class="blue-text">EXAMPLE:</span> T | ||
+ | | | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | Both balanced and unbalanced forms are observed by FISH (add references). | |
|- | |- | ||
− | + | |<span class="blue-text">EXAMPLE:</span> ''ABL1'' | |
− | + | |<span class="blue-text">EXAMPLE:</span> N/A | |
− | + | |<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | |
− | + | |<span class="blue-text">EXAMPLE:</span> N/A | |
− | + | |<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma) | |
+ | |<span class="blue-text">EXAMPLE:</span> D, P, T | ||
+ | | | ||
+ | | | ||
|- | |- | ||
− | | | + | | |
− | + | | | |
− | | | + | | |
− | | | + | | |
− | | | + | | |
− | | | + | | |
− | + | | | |
− | + | | | |
− | |} | + | |} |
− | |||
− | <blockquote class= | + | <blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> |
*Rare but (some) recurrent translocations/gene fusions: | *Rare but (some) recurrent translocations/gene fusions: | ||
Line 153: | Line 135: | ||
* | * | ||
+ | <blockquote class="blockedit"> | ||
+ | <center><span style="color:Maroon">'''End of V4 Section'''</span> | ||
+ | ---- | ||
</blockquote> | </blockquote> | ||
− | <blockquote class= | + | <blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in: |
* Chromosomal Rearrangements (Gene Fusions) | * Chromosomal Rearrangements (Gene Fusions) | ||
* Individual Region Genomic Gain/Loss/LOH | * Individual Region Genomic Gain/Loss/LOH | ||
* Characteristic Chromosomal Patterns | * Characteristic Chromosomal Patterns | ||
− | * Gene Mutations (SNV/INDEL)}} | + | * Gene Mutations (SNV/INDEL)}}</blockquote> |
{| class="wikitable" | {| class="wikitable" | ||
!Alteration | !Alteration | ||
Line 168: | Line 153: | ||
|BRAF mutations | |BRAF mutations | ||
|Diagnostic (exclusion) | |Diagnostic (exclusion) | ||
− | |Present in [[Hairy | + | |Present in [[HAEM5:Hairy cell leukaemia|hairy cell leukemia (HCL)]] and absent in SMZL<ref>{{Cite journal|last=Naseem|first=Shano|last2=Gupta|first2=Ojas|last3=Binota|first3=Jogeshwar|last4=Varma|first4=Neelam|last5=Varma|first5=Subhash|last6=Malhotra|first6=Pankaj|date=2020|title=BRAF V600E mutation detection in hairy cell leukemia-utility of archival DNA from bone marrow aspirate/imprint smear and amplification refractory mutation system|url=http://link.springer.com/10.1007/s11033-020-05509-0|journal=Molecular Biology Reports|language=en|doi=10.1007/s11033-020-05509-0|issn=0301-4851}}</ref> |
|- | |- | ||
|MYD88 mutations | |MYD88 mutations | ||
|Diagnostic (exclusion) | |Diagnostic (exclusion) | ||
− | |Present in [[Lymphoplasmacytic | + | |Present in [[HAEM5:Lymphoplasmacytic lymphoma|lymphoplasmacytic lymphoma (LPL)]] and rare but not absent in SMZL |
|- | |- | ||
|t(11;14)(q13;q32)/IGH-CCND1* | |t(11;14)(q13;q32)/IGH-CCND1* | ||
|Diagnostic (exclusion) | |Diagnostic (exclusion) | ||
− | |Present in [[Mantle | + | |Present in [[HAEM5:Mantle cell lymphoma|mantle cell lymphoma (MCL)]] and absent in SMZL |
|- | |- | ||
|t(14;18)(q32;q21)/IGH-BCL2 | |t(14;18)(q32;q21)/IGH-BCL2 | ||
|Diagnostic (exclusion) | |Diagnostic (exclusion) | ||
− | |Present in [[Follicular | + | |Present in [[HAEM5:Follicular lymphoma|follicular lymphoma (FL)]] and rare but not absent in SMZL<ref name=":1" /> |
|- | |- | ||
|t(11;18)(q21;q21)/BIRC3-MALT1 | |t(11;18)(q21;q21)/BIRC3-MALT1 | ||
|Diagnostic (exclusion) | |Diagnostic (exclusion) | ||
− | |Present in [[Extranodal | + | |Present in [[HAEM5:Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue|MALT lymphoma]] and absent in SMZL |
|- | |- | ||
|t(14;18)(q32;q21)/IGH-MALT1 | |t(14;18)(q32;q21)/IGH-MALT1 | ||
|Diagnostic (exclusion) | |Diagnostic (exclusion) | ||
− | |Present in [[Extranodal | + | |Present in [[HAEM5:Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue|MALT lymphoma]] and absent in SMZL<ref>{{Cite journal|last=Streubel|first=Berthold|last2=Lamprecht|first2=Andrea|last3=Dierlamm|first3=Judith|last4=Cerroni|first4=Lorenzo|last5=Stolte|first5=Manfred|last6=Ott|first6=German|last7=Raderer|first7=Markus|last8=Chott|first8=Andreas|date=2003|title=T(14;18)(q32;q21) involving IGH andMALT1 is a frequent chromosomal aberration in MALT lymphoma|url=https://ashpublications.org/blood/article/101/6/2335/106539/T1418q32q21-involving-IGH-andMALT1-is-a-frequent|journal=Blood|language=en|volume=101|issue=6|pages=2335–2339|doi=10.1182/blood-2002-09-2963|issn=1528-0020}}</ref> |
|- | |- | ||
|t(1;14)(p22;q32)/IGH-BCL10 | |t(1;14)(p22;q32)/IGH-BCL10 | ||
|Diagnostic (exclusion) | |Diagnostic (exclusion) | ||
− | |Present in [[Extranodal | + | |Present in [[HAEM5:Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue|MALT lymphoma]] and absent in SMZL |
|} | |} | ||
<nowiki>*</nowiki>Cases previously reported as SMZL with IGH-CCND1 fusion should now be classified as MCL | <nowiki>*</nowiki>Cases previously reported as SMZL with IGH-CCND1 fusion should now be classified as MCL | ||
+ | <blockquote class="blockedit"> | ||
+ | <center><span style="color:Maroon">'''End of V4 Section'''</span> | ||
+ | ---- | ||
</blockquote> | </blockquote> | ||
==Individual Region Genomic Gain/Loss/LOH== | ==Individual Region Genomic Gain/Loss/LOH== | ||
− | |||
+ | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
− | !Chr #!!Gain | + | !Chr #!!'''Gain, Loss, Amp, LOH'''!!'''Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]'''!!'''Relevant Gene(s)''' |
− | !Diagnostic | + | !'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T''' |
− | + | !'''Established Clinical Significance Per Guidelines - Yes or No (Source)''' | |
− | ! | + | !'''Clinical Relevance Details/Other Notes''' |
− | !Notes | ||
|- | |- | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
− | |||
7 | 7 | ||
− | |EXAMPLE Loss | + | |<span class="blue-text">EXAMPLE:</span> Loss |
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
− | |||
− | |||
− | |||
− | |||
chr7 | chr7 | ||
− | | | + | |<span class="blue-text">EXAMPLE:</span> |
− | | | + | Unknown |
− | |No | + | |<span class="blue-text">EXAMPLE:</span> D, P |
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> No |
− | + | |<span class="blue-text">EXAMPLE:</span> | |
− | Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add | + | Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). |
|- | |- | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
− | |||
8 | 8 | ||
− | |EXAMPLE Gain | + | |<span class="blue-text">EXAMPLE:</span> Gain |
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
− | |||
− | |||
− | |||
− | |||
chr8 | chr8 | ||
− | | | + | |<span class="blue-text">EXAMPLE:</span> |
− | | | + | Unknown |
− | | | + | |<span class="blue-text">EXAMPLE:</span> D, P |
− | |EXAMPLE | + | | |
− | + | |<span class="blue-text">EXAMPLE:</span> | |
− | Common recurrent secondary finding for t(8;21) (add | + | Common recurrent secondary finding for t(8;21) (add references). |
+ | |- | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | 17 | ||
+ | |<span class="blue-text">EXAMPLE:</span> Amp | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | 17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | ''ERBB2'' | ||
+ | |<span class="blue-text">EXAMPLE:</span> D, P, T | ||
+ | | | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
|} | |} | ||
− | <blockquote class= | + | <blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote> |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
Line 258: | Line 255: | ||
|} | |} | ||
+ | <blockquote class="blockedit"> | ||
+ | <center><span style="color:Maroon">'''End of V4 Section'''</span> | ||
+ | ---- | ||
</blockquote> | </blockquote> | ||
− | ==Characteristic Chromosomal Patterns== | + | ==Characteristic Chromosomal or Other Global Mutational Patterns== |
− | |||
+ | Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Chromosomal Pattern | !Chromosomal Pattern | ||
− | ! | + | !Molecular Pathogenesis |
− | !Prognostic Significance | + | !'''Prevalence -''' |
− | ! | + | '''Common >20%, Recurrent 5-20% or Rare <5% (Disease)''' |
− | !Notes | + | !'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T''' |
+ | !'''Established Clinical Significance Per Guidelines - Yes or No (Source)''' | ||
+ | !'''Clinical Relevance Details/Other Notes''' | ||
|- | |- | ||
− | |EXAMPLE | + | |<span class="blue-text">EXAMPLE:</span> |
− | |||
Co-deletion of 1p and 18q | Co-deletion of 1p and 18q | ||
− | | | + | |<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). |
− | + | |<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma) | |
− | + | |<span class="blue-text">EXAMPLE:</span> D, P | |
− | + | | | |
− | + | | | |
− | See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | + | |- |
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | Microsatellite instability - hypermutated | ||
+ | | | ||
+ | |<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma) | ||
+ | |<span class="blue-text">EXAMPLE:</span> P, T | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
|} | |} | ||
− | <blockquote class= | + | <blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote> |
*Ig gene rearrangements | *Ig gene rearrangements | ||
+ | <blockquote class="blockedit"> | ||
+ | <center><span style="color:Maroon">'''End of V4 Section'''</span> | ||
+ | ---- | ||
</blockquote> | </blockquote> | ||
==Gene Mutations (SNV/INDEL)== | ==Gene Mutations (SNV/INDEL)== | ||
− | |||
+ | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
− | !Gene | + | !Gene!!'''Genetic Alteration'''!!'''Tumor Suppressor Gene, Oncogene, Other'''!!'''Prevalence -''' |
− | !''' | + | '''Common >20%, Recurrent 5-20% or Rare <5% (Disease)''' |
− | ! | + | !'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T ''' |
− | + | !'''Established Clinical Significance Per Guidelines - Yes or No (Source)''' | |
− | + | !'''Clinical Relevance Details/Other Notes''' | |
|- | |- | ||
− | |EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span>''EGFR'' |
− | EXAMPLE: | + | <br /> |
− | + | |<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations | |
− | + | |<span class="blue-text">EXAMPLE:</span> Oncogene | |
− | + | |<span class="blue-text">EXAMPLE:</span> Common (lung cancer) | |
− | EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> T |
− | |EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> Yes (NCCN) |
− | |EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). |
− | + | |- | |
− | EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations |
− | |EXAMPLE: | + | <br /> |
− | |EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> Variable LOF mutations |
+ | |<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene | ||
+ | |<span class="blue-text">EXAMPLE:</span> Common (breast cancer) | ||
+ | |<span class="blue-text">EXAMPLE:</span> P | ||
+ | | | ||
+ | |<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | ||
+ | |- | ||
+ | |<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations | ||
+ | |<span class="blue-text">EXAMPLE:</span> Activating mutations | ||
+ | |<span class="blue-text">EXAMPLE:</span> Oncogene | ||
+ | |<span class="blue-text">EXAMPLE:</span> Common (melanoma) | ||
+ | |<span class="blue-text">EXAMPLE:</span> T | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
| | | | ||
| | | | ||
| | | | ||
− | + | |}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |
− | |||
− | |} | ||
− | Note: A more extensive list of mutations can be found in | ||
− | |||
− | <blockquote class= | + | <blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote> |
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
Line 387: | Line 419: | ||
<nowiki>*</nowiki>Specific mutations in these genes may be found in [https://www.cbioportal.org/ cBioPortal] or [https://cancer.sanger.ac.uk/cosmic COSMIC]. | <nowiki>*</nowiki>Specific mutations in these genes may be found in [https://www.cbioportal.org/ cBioPortal] or [https://cancer.sanger.ac.uk/cosmic COSMIC]. | ||
+ | <blockquote class="blockedit"> | ||
+ | <center><span style="color:Maroon">'''End of V4 Section'''</span> | ||
+ | ---- | ||
</blockquote> | </blockquote> | ||
==Epigenomic Alterations== | ==Epigenomic Alterations== | ||
Line 406: | Line 441: | ||
==Genes and Main Pathways Involved== | ==Genes and Main Pathways Involved== | ||
− | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: | + | |
+ | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Please include references throughout the table. Do not delete the table.)''</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | !Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | ||
|- | |- | ||
− | |EXAMPLE: BRAF and MAP2K1; Activating mutations | + | |<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations |
− | |EXAMPLE: MAPK signaling | + | |<span class="blue-text">EXAMPLE:</span> MAPK signaling |
− | |EXAMPLE: Increased cell growth and proliferation | + | |<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation |
|- | |- | ||
− | |EXAMPLE: CDKN2A; Inactivating mutations | + | |<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations |
− | |EXAMPLE: Cell cycle regulation | + | |<span class="blue-text">EXAMPLE:</span> Cell cycle regulation |
− | |EXAMPLE: Unregulated cell division | + | |<span class="blue-text">EXAMPLE:</span> Unregulated cell division |
|- | |- | ||
− | |EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations |
− | |EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling |
− | |EXAMPLE: | + | |<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program |
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
|} | |} | ||
− | <blockquote class= | + | <blockquote class="blockedit">{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote> |
{| class="wikitable" | {| class="wikitable" | ||
!Molecular Feature | !Molecular Feature | ||
Line 447: | Line 487: | ||
|} | |} | ||
+ | <blockquote class="blockedit"> | ||
+ | <center><span style="color:Maroon">'''End of V4 Section'''</span> | ||
+ | ---- | ||
</blockquote> | </blockquote> | ||
==Genetic Diagnostic Testing Methods== | ==Genetic Diagnostic Testing Methods== | ||
Line 465: | Line 508: | ||
==Links== | ==Links== | ||
− | *[[Splenic B-cell Lymphoma/Leukemia, Unclassifiable]] | + | *[[HAEM4:Splenic B-cell Lymphoma/Leukemia, Unclassifiable]] |
− | *[[Splenic | + | *[[HAEM5:Splenic diffuse red pulp small B-cell lymphoma]] |
==References== | ==References== | ||
− | (use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking | + | (use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references /> |
− | + | <br /> | |
==Notes== | ==Notes== | ||
− | <nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA | + | <nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representative. When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author. |
+ | |||
+ | Prior Author(s): | ||
+ | |||
+ | |||
<nowiki>*</nowiki>''Citation of this Page'': “Splenic marginal zone lymphoma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Splenic_marginal_zone_lymphoma</nowiki>. | <nowiki>*</nowiki>''Citation of this Page'': “Splenic marginal zone lymphoma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Splenic_marginal_zone_lymphoma</nowiki>. | ||
− | [[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases S]] | + | [[Category:HAEM5]] |
+ | [[Category:DISEASE]] | ||
+ | [[Category:Diseases S]] |
Latest revision as of 12:45, 24 March 2025
Haematolymphoid Tumours (WHO Classification, 5th ed.)
![]() | This page is under construction |
editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition ClassificationThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Splenic Marginal Zone Lymphoma.
(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)
Primary Author(s)*
- Snehal Patel, MD, PhD
WHO Classification of Disease
Structure | Disease |
---|---|
Book | Haematolymphoid Tumours (5th ed.) |
Category | B-cell lymphoid proliferations and lymphomas |
Family | Mature B-cell neoplasms |
Type | Splenic B-cell lymphomas and leukaemias |
Subtype(s) | Splenic marginal zone lymphoma |
WHO Essential and Desirable Genetic Diagnostic Criteria
(Instructions: The table will have the diagnostic criteria from the WHO book autocompleted; remove any non-genetics related criteria. If applicable, add text about other classification systems that define this entity and specify how the genetics-related criteria differ.)
WHO Essential Criteria (Genetics)* | |
WHO Desirable Criteria (Genetics)* | |
Other Classification |
*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.
Related Terminology
(Instructions: The table will have the related terminology from the WHO autocompleted.)
Acceptable | |
Not Recommended |
Gene Rearrangements
Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Driver Gene | Fusion(s) and Common Partner Genes | Molecular Pathogenesis | Typical Chromosomal Alteration(s) | Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|---|
EXAMPLE: ABL1 | EXAMPLE: BCR::ABL1 | EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. | EXAMPLE: t(9;22)(q34;q11.2) | EXAMPLE: Common (CML) | EXAMPLE: D, P, T | EXAMPLE: Yes (WHO, NCCN) | EXAMPLE:
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). |
EXAMPLE: CIC | EXAMPLE: CIC::DUX4 | EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. | EXAMPLE: t(4;19)(q25;q13) | EXAMPLE: Common (CIC-rearranged sarcoma) | EXAMPLE: D | EXAMPLE:
DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |
EXAMPLE: ALK | EXAMPLE: ELM4::ALK
|
EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. | EXAMPLE: N/A | EXAMPLE: Rare (Lung adenocarcinoma) | EXAMPLE: T | EXAMPLE:
Both balanced and unbalanced forms are observed by FISH (add references). | |
EXAMPLE: ABL1 | EXAMPLE: N/A | EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | EXAMPLE: N/A | EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) | EXAMPLE: D, P, T | ||
editv4:Chromosomal Rearrangements (Gene Fusions)The content below was from the old template. Please incorporate above.
- Rare but (some) recurrent translocations/gene fusions:
End of V4 Section
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).Please incorporate this section into the relevant tables found in:
- Chromosomal Rearrangements (Gene Fusions)
- Individual Region Genomic Gain/Loss/LOH
- Characteristic Chromosomal Patterns
- Gene Mutations (SNV/INDEL)
Alteration | Clinical Significance | Note |
---|---|---|
BRAF mutations | Diagnostic (exclusion) | Present in hairy cell leukemia (HCL) and absent in SMZL[12] |
MYD88 mutations | Diagnostic (exclusion) | Present in lymphoplasmacytic lymphoma (LPL) and rare but not absent in SMZL |
t(11;14)(q13;q32)/IGH-CCND1* | Diagnostic (exclusion) | Present in mantle cell lymphoma (MCL) and absent in SMZL |
t(14;18)(q32;q21)/IGH-BCL2 | Diagnostic (exclusion) | Present in follicular lymphoma (FL) and rare but not absent in SMZL[7] |
t(11;18)(q21;q21)/BIRC3-MALT1 | Diagnostic (exclusion) | Present in MALT lymphoma and absent in SMZL |
t(14;18)(q32;q21)/IGH-MALT1 | Diagnostic (exclusion) | Present in MALT lymphoma and absent in SMZL[13] |
t(1;14)(p22;q32)/IGH-BCL10 | Diagnostic (exclusion) | Present in MALT lymphoma and absent in SMZL |
*Cases previously reported as SMZL with IGH-CCND1 fusion should now be classified as MCL
End of V4 Section
Individual Region Genomic Gain/Loss/LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)
Chr # | Gain, Loss, Amp, LOH | Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] | Relevant Gene(s) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|
EXAMPLE:
7 |
EXAMPLE: Loss | EXAMPLE:
chr7 |
EXAMPLE:
Unknown |
EXAMPLE: D, P | EXAMPLE: No | EXAMPLE:
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). |
EXAMPLE:
8 |
EXAMPLE: Gain | EXAMPLE:
chr8 |
EXAMPLE:
Unknown |
EXAMPLE: D, P | EXAMPLE:
Common recurrent secondary finding for t(8;21) (add references). | |
EXAMPLE:
17 |
EXAMPLE: Amp | EXAMPLE:
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] |
EXAMPLE:
ERBB2 |
EXAMPLE: D, P, T | EXAMPLE:
Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | |
editv4:Genomic Gain/Loss/LOHThe content below was from the old template. Please incorporate above.
Chromosome Number | Gain/Loss/Amp/LOH | Significance | Prevalence |
---|---|---|---|
7q31-32 | Loss (heterozygous) | Unknown; possible haploinsufficiency of IRF5 tumor suppressor[14] | 26–45%[15][16][17] |
3/3q | Gain (trisomy) | Unknown | 15%[15][17][16] |
End of V4 Section
Characteristic Chromosomal or Other Global Mutational Patterns
Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Chromosomal Pattern | Molecular Pathogenesis | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|
EXAMPLE:
Co-deletion of 1p and 18q |
EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | EXAMPLE: Common (Oligodendroglioma) | EXAMPLE: D, P | ||
EXAMPLE:
Microsatellite instability - hypermutated |
EXAMPLE: Common (Endometrial carcinoma) | EXAMPLE: P, T | |||
editv4:Characteristic Chromosomal Aberrations / PatternsThe content below was from the old template. Please incorporate above.
- Ig gene rearrangements
End of V4 Section
Gene Mutations (SNV/INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Gene | Genetic Alteration | Tumor Suppressor Gene, Oncogene, Other | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|
EXAMPLE:EGFR
|
EXAMPLE: Exon 18-21 activating mutations | EXAMPLE: Oncogene | EXAMPLE: Common (lung cancer) | EXAMPLE: T | EXAMPLE: Yes (NCCN) | EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). |
EXAMPLE: TP53; Variable LOF mutations
|
EXAMPLE: Variable LOF mutations | EXAMPLE: Tumor Supressor Gene | EXAMPLE: Common (breast cancer) | EXAMPLE: P | EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | |
EXAMPLE: BRAF; Activating mutations | EXAMPLE: Activating mutations | EXAMPLE: Oncogene | EXAMPLE: Common (melanoma) | EXAMPLE: T | ||
Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
editv4:Gene Mutations (SNV/INDEL)The content below was from the old template. Please incorporate above.
Gene* | Oncogene/Tumor Suppressor/Other | Presumed Mechanism (LOF/GOF/Other) | Prevalence (COSMIC) |
---|---|---|---|
NOTCH2 | Oncogene or Tumor Suppressor[18] | Other | 21% |
MYD88 | Oncogene | GOF | 7% |
KLF2 | Likely tumor suppressor in most contexts[19] | LOF | 20%[20] |
TNFAIP3 | Tumor Suppressor | LOF | 8% |
TP53 | Tumor Suppressor | LOF | 7% |
BIRC3 | Oncogene or Tumor Suppressor[21] | Other | 5% |
CARD11 | Oncogene | GOF | 4% |
IKBKB | Oncogene | GOF | 4% |
SPEN | Tumor Suppressor | LOF | 6% |
NOTCH1 | Oncogene or Tumor Suppressor[18] | Other | 11% |
TBL1XR1 | Oncogene or Tumor Suppressor[22] | Other | 7% |
NFKBIE | Tumor Suppressor | LOF | 2% |
*Specific mutations in these genes may be found in cBioPortal or COSMIC.
End of V4 Section
Epigenomic Alterations
- Epigenetic dysregulation expected on basis of genetic alterations in histone modifying and chromatin remodeling factors:
- TBL1XR1 is a member of nuclear receptor corepressor (N-CoR) and histone deacetylase 3 (HDAC3) complexes
- CREBBP is a histone acetyltransferase
- ARID1A is a member of SWI-SNF complexes
- EP300 is a histone acetyltransferase
- DNMT3A is a DNA methyltransferase
- Promoter methylation and gene expression study revealed two clusters of SMZL[23]
- high methylation group compared to low methylation group showed
- Methylated/repressed tumor suppressor genes and unmethylated/overexpressed prosurvival genes
- Association with NOTCH2 mutations, 7q31-32 loss, and histologic transformation
- Reduced overall survival
- Reduced proliferation and reversion of phenotype in response to demethylating agents in vitro
- high methylation group compared to low methylation group showed
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
editv4:Genes and Main Pathways InvolvedThe content below was from the old template. Please incorporate above.
Molecular Feature | Pathway | Pathophysiologic outcome |
---|---|---|
NOTCH2, NOTCH1, DTX, and SPEN mutations | NOTCH signaling[24] | Increased proliferation and survival |
MYD88, TNFAIP3, BIRC3, CARD11, IKBKB, NFKBIE, and TRAF3 mutations | NF-κB signaling[25][26][27] | Lymphocyte development |
TP53 mutations | TP53 pathway | Dysregulation of genomic stability and apoptosis |
TBL1XR1, CREBBP, ARID1A, EP300, and DNMT3A mutations | Histone modification and chromatin remodeling[24] | Abnormal gene expression program |
End of V4 Section
Genetic Diagnostic Testing Methods
- Clinical, morphologic, and immunophenotypic findings and exclusion of other low-grade B-cell lymphomas are generally sufficient for diagnosis
- No established specific diagnostic test currently exists
- Molecular testing may help exclude other entities in some cases (see below)
Familial Forms
- None
Additional Information
- None
Links
- HAEM4:Splenic B-cell Lymphoma/Leukemia, Unclassifiable
- HAEM5:Splenic diffuse red pulp small B-cell lymphoma
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)
- ↑ Shi, Xiaofeng; et al. (2018). "A rare case of B-lymphoproliferative disorder with villous lymphocytes harboring t(8;14)(q24;q32) translocation". Frontiers of Medicine. 12 (3): 324–329. doi:10.1007/s11684-017-0558-z. ISSN 2095-0217.
- ↑ Scapinello, Greta; et al. (2018). "Splenic marginal zone lymphoma with a de novo t(8;14)(q24;q32) and a prolymphocytoid evolution responsive to rituximab-bendamustine". Annals of Hematology. 97 (10): 2001–2003. doi:10.1007/s00277-018-3351-4. ISSN 0939-5555.
- ↑ Gindin, Tatyana; et al. (2015). "MLL / KMT2A translocations in diffuse large B-cell lymphomas: MLL / KMT2A translocations in diffuse large B-cell lymphomas". Hematological Oncology. 33 (4): 239–246. doi:10.1002/hon.2158.
- ↑ Remstein, E D; et al. (2008). "The prevalence of IG translocations and 7q32 deletions in splenic marginal zone lymphoma". Leukemia. 22 (6): 1268–1272. doi:10.1038/sj.leu.2405027. ISSN 0887-6924.
- ↑ Corcoran, M M; et al. (1999). "Dysregulation of cyclin dependent kinase 6 expression in splenic marginal zone lymphoma through chromosome 7q translocations". Oncogene. 18 (46): 6271–6277. doi:10.1038/sj.onc.1203033. ISSN 0950-9232.
- ↑ Parker, Edward; et al. (2011). "Molecular characterization of a t(2;7) translocation linking CDK6 to the IGK locus in CD5− monoclonal B-cell lymphocytosis". Cancer Genetics. 204 (5): 260–264. doi:10.1016/j.cancergen.2011.03.004.
- ↑ Jump up to: 7.0 7.1 Baseggio, Lucile; et al. (2012). "In non-follicular lymphoproliferative disorders, IGH/BCL2-fusion is not restricted to chronic lymphocytic leukaemia". British Journal of Haematology. 158 (4): 489–498. doi:10.1111/j.1365-2141.2012.09178.x.
- ↑ Nagel, Inga; et al. (2010). "Deregulation of the telomerase reverse transcriptase (TERT) gene by chromosomal translocations in B-cell malignancies". Blood. 116 (8): 1317–1320. doi:10.1182/blood-2009-09-240440. ISSN 0006-4971.
- ↑ Kelly, Richard J.; et al. (2007). "The t(9;14)(p13;q32) is a recurrent but rare abnormality in splenic marginal zone lymphoma". Leukemia & Lymphoma. 48 (8): 1636–1637. doi:10.1080/10428190701474415. ISSN 1042-8194.
- ↑ Sole, F.; et al. (2006). "Translocation t(9;14)(p13;q32) in cases of splenic marginal zone lymphoma". Haematologica. 91 (9): 1289–1291. ISSN 0390-6078. PMID 16956840.
- ↑ K, Kawakami; et al. (1998). "A Case of Primary Splenic Large Cell Lymphoma With a t(9;14)(p13;q32)". PMID 9631587.
- ↑ Naseem, Shano; et al. (2020). "BRAF V600E mutation detection in hairy cell leukemia-utility of archival DNA from bone marrow aspirate/imprint smear and amplification refractory mutation system". Molecular Biology Reports. doi:10.1007/s11033-020-05509-0. ISSN 0301-4851.
- ↑ Streubel, Berthold; et al. (2003). "T(14;18)(q32;q21) involving IGH andMALT1 is a frequent chromosomal aberration in MALT lymphoma". Blood. 101 (6): 2335–2339. doi:10.1182/blood-2002-09-2963. ISSN 1528-0020.
- ↑ Fresquet, Vicente; et al. (2012). "High-throughput sequencing analysis of the chromosome 7q32 deletion reveals IRF5 as a potential tumour suppressor in splenic marginal-zone lymphoma". British Journal of Haematology. 158 (6): 712–726. doi:10.1111/j.1365-2141.2012.09226.x.
- ↑ Jump up to: 15.0 15.1 Salido, Marta; et al. (2010). "Cytogenetic aberrations and their prognostic value in a series of 330 splenic marginal zone B-cell lymphomas: a multicenter study of the Splenic B-Cell Lymphoma Group". Blood. 116 (9): 1479–1488. doi:10.1182/blood-2010-02-267476. ISSN 0006-4971.
- ↑ Jump up to: 16.0 16.1 Baró, Cristina; et al. (2008). "New chromosomal alterations in a series of 23 splenic marginal zone lymphoma patients revealed by Spectral Karyotyping (SKY)". Leukemia Research. 32 (5): 727–736. doi:10.1016/j.leukres.2007.09.012.
- ↑ Jump up to: 17.0 17.1 Gruszka-Westwood, Alicja M.; et al. (2003). "Deletion mapping on the long arm of chromosome 7 in splenic lymphoma with villous lymphocytes". Genes, Chromosomes and Cancer. 36 (1): 57–69. doi:10.1002/gcc.10142. ISSN 1045-2257.
- ↑ Jump up to: 18.0 18.1 Lobry, Camille; et al. (2011). "Oncogenic and tumor suppressor functions of Notch in cancer: it's NOTCH what you think". The Journal of Experimental Medicine. 208 (10): 1931–1935. doi:10.1084/jem.20111855. ISSN 1540-9538. PMC 3182047. PMID 21948802.CS1 maint: PMC format (link)
- ↑ Wang, Chunmei; et al. (2017). "Krüppel-like factor 2 suppresses human gastric tumorigenesis through inhibiting PTEN/AKT signaling". Oncotarget. 8 (59): 100358–100370. doi:10.18632/oncotarget.22229. ISSN 1949-2553. PMC 5725026. PMID 29245984.CS1 maint: PMC format (link)
- ↑ Jaramillo Oquendo, Carolina; et al. (2019). "Systematic Review of Somatic Mutations in Splenic Marginal Zone Lymphoma". Scientific Reports. 9 (1). doi:10.1038/s41598-019-46906-1. ISSN 2045-2322. PMC 6639539. PMID 31320741.CS1 maint: PMC format (link)
- ↑ Yamato, Azusa; et al. (2015). "Oncogenic activity of BIRC2 and BIRC3 mutants independent of nuclear factor-κB-activating potential". Cancer Science. 106 (9): 1137–1142. doi:10.1111/cas.12726. PMC 4582982. PMID 26094954.CS1 maint: PMC format (link)
- ↑ Cao, Qinghua; et al. (2018). "TBL1XR1 promotes migration and invasion in osteosarcoma cells and is negatively regulated by miR-186-5p". American Journal of Cancer Research. 8 (12): 2481–2493. ISSN 2156-6976. PMC 6325474. PMID 30662805.
- ↑ Arribas, Alberto J.; et al. (2015). "DNA methylation profiling identifies two splenic marginal zone lymphoma subgroups with different clinical and genetic features". Blood. 125 (12): 1922–1931. doi:10.1182/blood-2014-08-596247. ISSN 0006-4971. PMC 4416938. PMID 25612624.CS1 maint: PMC format (link)
- ↑ Jump up to: 24.0 24.1 Rossi, Davide; et al. (2012). "The coding genome of splenic marginal zone lymphoma: activation of NOTCH2 and other pathways regulating marginal zone development". The Journal of Experimental Medicine. 209 (9): 1537–1551. doi:10.1084/jem.20120904. ISSN 1540-9538. PMC 3428941. PMID 22891273.CS1 maint: PMC format (link)
- ↑ Spina, Valeria; et al. (2016). "NF-κB deregulation in splenic marginal zone lymphoma". Seminars in Cancer Biology. 39: 61–67. doi:10.1016/j.semcancer.2016.08.002.
- ↑ Yan, Q.; et al. (2012). "BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas". Haematologica. 97 (4): 595–598. doi:10.3324/haematol.2011.054080. ISSN 0390-6078. PMC 3347666. PMID 22102703.CS1 maint: PMC format (link)
- ↑ Rossi, Davide; et al. (2011). "Alteration of BIRC3 and multiple other NF-κB pathway genes in splenic marginal zone lymphoma". Blood. 118 (18): 4930–4934. doi:10.1182/blood-2011-06-359166. ISSN 0006-4971.
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative. When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
Prior Author(s):
*Citation of this Page: “Splenic marginal zone lymphoma”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 03/24/2025, https://ccga.io/index.php/HAEM5:Splenic_marginal_zone_lymphoma.