Difference between revisions of "HAEM5:Myeloid/lymphoid neoplasm with JAK2 rearrangement"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[unchecked revision][checked revision]
 
(8 intermediate revisions by the same user not shown)
Line 1: Line 1:
 
{{DISPLAYTITLE:Myeloid/lymphoid neoplasm with JAK2 rearrangement}}
 
{{DISPLAYTITLE:Myeloid/lymphoid neoplasm with JAK2 rearrangement}}
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]]
+
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]]
  
 
{{Under Construction}}
 
{{Under Construction}}
  
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|This page was converted to the new template on 2023-11-30. The original page can be found at [[HAEM4:Myeloid/Lymphoid Neoplasms with PCM1-JAK2]].
+
<blockquote class="blockedit">{{Box-round|title=Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification|This page was converted to the new template on 2023-12-07. The original page can be found at [[HAEM4:Myeloid/Lymphoid Neoplasms with PCM1-JAK2]].
 
}}</blockquote>
 
}}</blockquote>
 +
 +
<span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span>
 +
 
==Primary Author(s)*==
 
==Primary Author(s)*==
  
 
Jessica Snider, M.D. and Daynna J. Wolff, PhD
 
Jessica Snider, M.D. and Daynna J. Wolff, PhD
 +
==WHO Classification of Disease==
  
__TOC__
+
{| class="wikitable"
 +
!Structure
 +
!Disease
 +
|-
 +
|Book
 +
|Haematolymphoid Tumours (5th ed.)
 +
|-
 +
|Category
 +
|Myeloid proliferations and neoplasms
 +
|-
 +
|Family
 +
|Myeloid/lymphoid neoplasms
 +
|-
 +
|Type
 +
|Myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangement
 +
|-
 +
|Subtype(s)
 +
|Myeloid/lymphoid neoplasm with JAK2 rearrangement
 +
|}
  
==Cancer Category / Type==
+
==WHO Essential and Desirable Genetic Diagnostic Criteria==
 
+
<span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span>
Acute Myeloid Leukemia/Myeloid/lymphoid neoplasm with eosinophilia
+
{| class="wikitable"
 
+
|+
==Cancer Sub-Classification / Subtype==
+
|WHO Essential Criteria (Genetics)*
 
+
|
''PCM1/JAK2''-Mediated myeloid/lymphoid neoplasm with eosinophilia
+
|-
 
+
|WHO Desirable Criteria (Genetics)*
==Definition / Description of Disease==
+
|
 
+
|-
A hematologic neoplasm comprised of pluripotent (lymphoid-myeloid) stem cells characteristically seen with eosinophilia that result from the formation of a fusion between the ''PCM1'' and ''JAK2'' genes, leading to the expression of an aberrant tyrosine kinase. Due to its pluripotent nature, the hematologic stem cells can give rise to eosinophils, neutrophils, B-lymphoid and T-lymphoid cells. The presence of eosinophilia is not required for the diagnosis.<ref name=":0">Bain BJ, Horny HP, Arber DA, et al. Myeloid/lymphoid neoplasms with eosinophilia and rearrangement of ''PDGFRA'', ''PDGFRB'' or ''FGFR1'', or with ''PCM1-JAK2''., in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. IARC Press: Lyon, France, p129-171.</ref><ref>{{Cite journal|last=Reiter|first=Andreas|last2=Gotlib|first2=Jason|date=2017|title=Myeloid neoplasms with eosinophilia|url=https://ashpublications.org/blood/article/129/6/704/36333/Myeloid-neoplasms-with-eosinophilia|journal=Blood|language=en|volume=129|issue=6|pages=704–714|doi=10.1182/blood-2016-10-695973|issn=0006-4971}}</ref><ref>{{Cite journal|last=Baer|first=Constance|last2=Muehlbacher|first2=Verena|last3=Kern|first3=Wolfgang|last4=Haferlach|first4=Claudia|last5=Haferlach|first5=Torsten|date=2018|title=Molecular genetic characterization of myeloid/lymphoid neoplasms associated with eosinophilia and rearrangement of PDGFRA, PDGFRB, FGFR1 or PCM1-JAK2|url=http://www.haematologica.org/lookup/doi/10.3324/haematol.2017.187302|journal=Haematologica|language=en|volume=103|issue=8|pages=e348–e350|doi=10.3324/haematol.2017.187302|issn=0390-6078|pmc=PMC6068021|pmid=29567772}}</ref>
+
|Other Classification
 
+
|
==Synonyms / Terminology==
+
|}
 
+
<nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>].
Chronic eosinophilic leukemia with ''PCM1/JAK2''
+
==Related Terminology==
 
+
<span style="color:#0070C0">(''Instructions: The table will have the related terminology from the WHO <u>autocompleted</u>.)''</span>
''PCM1/JAK2'' –associated chronic eosinophilic leukemia
 
 
 
Myeloid and lymphoid neoplasms associated with JAK2 rearrangement
 
 
 
JAK2-associated Hypereosinophilic syndrome
 
 
 
Myeloid and lymphoid neoplasms with JAK2 rearrangement
 
 
 
Myeloproliferative variant of the hypereosinophilic syndrome
 
==Epidemiology / Prevalence==
 
 
 
This disease is rare; the incidence of hypereosinophilia in general is only 0.036 per 100,000 and genetic causes represent only a small portion of these<ref>{{Cite journal|last=Crane|first=Martin M.|last2=Chang|first2=Cindy Ma|last3=Kobayashi|first3=Monica G.|last4=Weller|first4=Peter F.|date=2010|title=Incidence of myeloproliferative hypereosinophilic syndrome in the United States and an estimate of all hypereosinophilic syndrome incidence|url=https://linkinghub.elsevier.com/retrieve/pii/S0091674910005816|journal=Journal of Allergy and Clinical Immunology|language=en|volume=126|issue=1|pages=179–181|doi=10.1016/j.jaci.2010.03.035|pmc=PMC5781228|pmid=20639012}}</ref>There is a significant male predominance with a median age of 47 years old (age range 7-77)<ref name=":0" /> As of August 2018, only 40 cases had been reported<ref name=":2">{{Cite journal|last=Tang|first=Guilin|last2=Sydney Sir Philip|first2=John Kennedy|last3=Weinberg|first3=Olga|last4=Tam|first4=Wayne|last5=Sadigh|first5=Sam|last6=Lake|first6=Jonathan I.|last7=Margolskee|first7=Elizabeth M.|last8=Rogers|first8=Heesun J.|last9=Miranda|first9=Roberto N.|date=2019|title=Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study|url=http://www.nature.com/articles/s41379-018-0165-9|journal=Modern Pathology|language=en|volume=32|issue=4|pages=490–498|doi=10.1038/s41379-018-0165-9|issn=0893-3952}}</ref>
 
 
 
==Clinical Features==
 
 
 
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span>
 
 
{| class="wikitable"
 
{| class="wikitable"
|'''Signs and Symptoms'''
+
|+
|EXAMPLE Asymptomatic (incidental finding on complete blood counts)
+
|Acceptable
 
+
|
EXAMPLE B-symptoms (weight loss, fever, night sweats)
 
 
 
EXAMPLE Fatigue
 
 
 
EXAMPLE Lymphadenopathy (uncommon)
 
 
|-
 
|-
|'''Laboratory Findings'''
+
|Not Recommended
|EXAMPLE Cytopenias
+
|
 
 
EXAMPLE Lymphocytosis (low level)
 
 
|}
 
|}
  
 +
==Gene Rearrangements==
  
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}
 
 
Patients typically present with features of a myeloproliferative disorder or MDS/MPN and most have eosinophilia and/or bone marrow  fibrosis<ref name=":2" /><ref name=":1">{{Cite journal|last=Hoeller|first=Sylvia|last2=Walz|first2=Christoph|last3=Reiter|first3=Andreas|last4=Dirnhofer|first4=Stephan|last5=Tzankov|first5=Alexandar|date=2011|title=PCM1–JAK2-fusion: a potential treatment target in myelodysplastic–myeloproliferative and other hemato-lymphoid neoplasms|url=http://www.tandfonline.com/doi/full/10.1517/14728222.2011.538683|journal=Expert Opinion on Therapeutic Targets|language=en|volume=15|issue=1|pages=53–62|doi=10.1517/14728222.2011.538683|issn=1472-8222}}</ref>. Patients in chronic phase tend to progress to AML quickly; some present with de novo acute leukemia, either myeloid or lymphoid<ref name=":1" /><ref name=":2" /><sup> </sup>
 
 
In general, patients with this disorder have weakness/fatigue (~26%), cough (~24%), myaligias/angioedema (~14%), rash or fever (~12%) and rhinitis (~10%)<ref>{{Cite journal|last=Gotlib|first=Jason|date=2017|title=World Health Organization-defined eosinophilic disorders: 2017 update on diagnosis, risk stratification, and management|url=http://doi.wiley.com/10.1002/ajh.24880|journal=American Journal of Hematology|language=en|volume=92|issue=11|pages=1243–1259|doi=10.1002/ajh.24880}}</ref> ; lymphadenopathy and splenomegaly are common<ref name=":2" />
 
 
</blockquote>
 
==Sites of Involvement==
 
 
Peripheral blood and bone marrow
 
 
==Morphologic Features==
 
 
Patients often have a hypercellular bone marrow with increased eosinophils and fibrosis<ref name=":0" /><ref name=":2" />.Increased granuolpoiesis with eosinophilia and neutrophil precursors, including myeloblasts<ref name=":0" /><ref name=":2" />. Dyserythropoiesis and dysgranulopoiesis are not typical but may be observed<ref name=":0" /><ref name=":2" />  Increased lymphoblasts may also be seen with blast cells having high nuclear to cytoplasmic ratios and open chromatin. If eosinophilia is present, it is comprised mainly of mature eosinophils with scattered immature forms. Eosinophilic abnormalities can be seen and include sparse granulation with small forms, vacuoles in the cytoplasm, increased eosinophil size, and nuclear hypo- and hypersegmentation.
 
 
==Immunophenotype==
 
 
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span>
 
  
 +
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
!Finding!!Marker
+
!Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s)
 +
!Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease)
 +
!Diagnostic, Prognostic, and Therapeutic Significance - D, P, T
 +
!Established Clinical Significance Per Guidelines - Yes or No (Source)
 +
!Clinical Relevance Details/Other Notes
 
|-
 
|-
|Positive (universal)||EXAMPLE CD1
+
|<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)
 +
|<span class="blue-text">EXAMPLE:</span> Common (CML)
 +
|<span class="blue-text">EXAMPLE:</span> D, P, T
 +
|<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN)
 +
|<span class="blue-text">EXAMPLE:</span>
 +
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).
 
|-
 
|-
|Positive (subset)||EXAMPLE CD2
+
|<span class="blue-text">EXAMPLE:</span> ''CIC''
|-
+
|<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4''
|Negative (universal)||EXAMPLE CD3
+
|<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''.
 +
|<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13)
 +
|<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma)
 +
|<span class="blue-text">EXAMPLE:</span> D
 +
|
 +
|<span class="blue-text">EXAMPLE:</span>
 +
 
 +
''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).
 
|-
 
|-
|Negative (subset)||EXAMPLE CD4
+
|<span class="blue-text">EXAMPLE:</span> ''ALK''
|}
+
|<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK''
  
  
<blockquote class='blockedit'>{{Box-round|title=v4:Immunophenotype|The content below was from the old template. Please incorporate above.}}
+
Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1''
 
+
|<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18.
IHC can be used to characterize acute myeloid transformation and myeloblasts express dim CD45, dim CD34, dim CD117, HLA-DR, dim CD33, and dim CD13<ref name=":0" />. In addition, For the cases with lymphoid components, IHC can assist with assessment and show dim CD19 and dim CD10, consistent with lymphoblast lineage<ref name=":0" /><ref name=":2" />.
+
|<span class="blue-text">EXAMPLE:</span> N/A
 
+
|<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma)
</blockquote>
+
|<span class="blue-text">EXAMPLE:</span> T
==Chromosomal Rearrangements (Gene Fusions)==
+
|
 
+
|<span class="blue-text">EXAMPLE:</span>
Put your text here and fill in the table
 
  
{| class="wikitable sortable"
+
Both balanced and unbalanced forms are observed by FISH (add references).
 
|-
 
|-
!Chromosomal Rearrangement!!Genes in Fusion (5’ or 3’ Segments)!!Pathogenic Derivative!!Prevalence
+
|<span class="blue-text">EXAMPLE:</span> ''ABL1''
!Diagnostic Significance (Yes, No or Unknown)
+
|<span class="blue-text">EXAMPLE:</span> N/A
!Prognostic Significance (Yes, No or Unknown)
+
|<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways.
!Therapeutic Significance (Yes, No or Unknown)
+
|<span class="blue-text">EXAMPLE:</span> N/A
!Notes
+
|<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma)
 +
|<span class="blue-text">EXAMPLE:</span> D, P, T
 +
|
 +
|
 
|-
 
|-
|EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 20% (COSMIC)
+
|
EXAMPLE 30% (add reference)
+
|
|Yes
+
|
|No
+
|
|Yes
+
|
|EXAMPLE
+
|
 +
|
 +
|
 +
|}
  
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
+
<blockquote class="blockedit">{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote>
|}
 
 
 
 
<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}
 
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 132: Line 132:
 
|}
 
|}
 
 
 +
<blockquote class="blockedit">
 +
<center><span style="color:Maroon">'''End of V4 Section'''</span>
 +
----
 
</blockquote>
 
</blockquote>
  
  
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
+
<blockquote class="blockedit">{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
 
* Chromosomal Rearrangements (Gene Fusions)
 
* Chromosomal Rearrangements (Gene Fusions)
 
* Individual Region Genomic Gain/Loss/LOH
 
* Individual Region Genomic Gain/Loss/LOH
 
* Characteristic Chromosomal Patterns
 
* Characteristic Chromosomal Patterns
* Gene Mutations (SNV/INDEL)}}
+
* Gene Mutations (SNV/INDEL)}}</blockquote>
Most patients present with MPN with variable degrees of eosinophilia in blood and/or bone marrow, frequent marrow fibrosis, and large aggregates of immature erythroid precursors, and clinically exhibit hepatosplenomegagly and lymphadenopathy<ref name=":2" />. However, diagnosis may be difficult in cases without obvious eosinophilia.  
+
Most patients present with MPN with variable degrees of eosinophilia in blood and/or bone marrow, frequent marrow fibrosis, and large aggregates of immature erythroid precursors, and clinically exhibit hepatosplenomegagly and lymphadenopathy<ref name=":2">{{Cite journal|last=Tang|first=Guilin|last2=Sydney Sir Philip|first2=John Kennedy|last3=Weinberg|first3=Olga|last4=Tam|first4=Wayne|last5=Sadigh|first5=Sam|last6=Lake|first6=Jonathan I.|last7=Margolskee|first7=Elizabeth M.|last8=Rogers|first8=Heesun J.|last9=Miranda|first9=Roberto N.|date=2019|title=Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study|url=http://www.nature.com/articles/s41379-018-0165-9|journal=Modern Pathology|language=en|volume=32|issue=4|pages=490–498|doi=10.1038/s41379-018-0165-9|issn=0893-3952}}</ref>. However, diagnosis may be difficult in cases without obvious eosinophilia.  
  
 
Due to the variations in presentation, the prognosis is mainly dependent on the phase at presentation, but generally tends to have an aggressive course<sup>1</sup>. There currently are no approved therapies for ''PCM1/JAK2''-mediated myeloid/lymphoid neoplasm with eosinophilia; however, ''JAK2'' inhibitors have been approved for other hematopoietic neoplasms with constitutively activated ''JAK2'' kinases.<sup>2</sup>
 
Due to the variations in presentation, the prognosis is mainly dependent on the phase at presentation, but generally tends to have an aggressive course<sup>1</sup>. There currently are no approved therapies for ''PCM1/JAK2''-mediated myeloid/lymphoid neoplasm with eosinophilia; however, ''JAK2'' inhibitors have been approved for other hematopoietic neoplasms with constitutively activated ''JAK2'' kinases.<sup>2</sup>
  
 +
<blockquote class="blockedit">
 +
<center><span style="color:Maroon">'''End of V4 Section'''</span>
 +
----
 
</blockquote>
 
</blockquote>
==Individual Region Genomic Gain / Loss / LOH==
+
==Individual Region Genomic Gain/Loss/LOH==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.'') </span>
 
  
 +
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span>
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
!Chr #!!Gain / Loss / Amp / LOH!!Minimal Region Genomic Coordinates [Genome Build]!!Minimal Region Cytoband
+
!Chr #!!'''Gain, Loss, Amp, LOH'''!!'''Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]'''!!'''Relevant Gene(s)'''
!Diagnostic Significance (Yes, No or Unknown)
+
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T'''
!Prognostic Significance (Yes, No or Unknown)
+
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
!Therapeutic Significance (Yes, No or Unknown)
+
!'''Clinical Relevance Details/Other Notes'''
!Notes
 
 
|-
 
|-
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
 
 
 
7
 
7
|EXAMPLE Loss
+
|<span class="blue-text">EXAMPLE:</span> Loss
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
 
 
chr7:1- 159,335,973 [hg38]
 
|EXAMPLE
 
 
 
 
chr7
 
chr7
|Yes
+
|<span class="blue-text">EXAMPLE:</span>
|Yes
+
Unknown
|No
+
|<span class="blue-text">EXAMPLE:</span> D, P
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span> No
 
+
|<span class="blue-text">EXAMPLE:</span>
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
+
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).
 
|-
 
|-
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
 
 
 
8
 
8
|EXAMPLE Gain
+
|<span class="blue-text">EXAMPLE:</span> Gain
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
 
 
chr8:1-145,138,636 [hg38]
 
|EXAMPLE
 
 
 
 
chr8
 
chr8
|No
+
|<span class="blue-text">EXAMPLE:</span>
|No
+
Unknown
|No
+
|<span class="blue-text">EXAMPLE:</span> D, P
|EXAMPLE
+
|
 
+
|<span class="blue-text">EXAMPLE:</span>
Common recurrent secondary finding for t(8;21) (add reference).
+
Common recurrent secondary finding for t(8;21) (add references).
 +
|-
 +
|<span class="blue-text">EXAMPLE:</span>
 +
17
 +
|<span class="blue-text">EXAMPLE:</span> Amp
 +
|<span class="blue-text">EXAMPLE:</span>
 +
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]
 +
|<span class="blue-text">EXAMPLE:</span>
 +
''ERBB2''
 +
|<span class="blue-text">EXAMPLE:</span> D, P, T
 +
|
 +
|<span class="blue-text">EXAMPLE:</span>
 +
Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.
 +
|-
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}
+
<blockquote class="blockedit">{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}</blockquote>
  
 
There are no known recurrent genomic loss/gain or LOH pattern associated with entity.
 
There are no known recurrent genomic loss/gain or LOH pattern associated with entity.
 +
<blockquote class="blockedit">
 +
<center><span style="color:Maroon">'''End of V4 Section'''</span>
 +
----
 
</blockquote>
 
</blockquote>
==Characteristic Chromosomal Patterns==
+
==Characteristic Chromosomal or Other Global Mutational Patterns==
  
Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis'')</span>
 
  
 +
Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span>
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
 
!Chromosomal Pattern
 
!Chromosomal Pattern
!Diagnostic Significance (Yes, No or Unknown)
+
!Molecular Pathogenesis
!Prognostic Significance (Yes, No or Unknown)
+
!'''Prevalence -'''
!Therapeutic Significance (Yes, No or Unknown)
+
'''Common >20%, Recurrent 5-20% or Rare <5% (Disease)'''
!Notes
+
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T'''
 +
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
 +
!'''Clinical Relevance Details/Other Notes'''
 
|-
 
|-
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
 
 
 
Co-deletion of 1p and 18q
 
Co-deletion of 1p and 18q
|Yes
+
|<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
|No
+
|<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma)
|No
+
|<span class="blue-text">EXAMPLE:</span> D, P
|EXAMPLE:
+
|
 
+
|
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
+
|-
 +
|<span class="blue-text">EXAMPLE:</span>
 +
Microsatellite instability - hypermutated
 +
|
 +
|<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma)
 +
|<span class="blue-text">EXAMPLE:</span> P, T
 +
|
 +
|
 +
|-
 +
|
 +
|
 +
|
 +
|
 +
|
 +
|
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}
+
<blockquote class="blockedit">{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}</blockquote>
  
 
There are no known secondary chromosomal changes and no pattern of other chromosome aberrations.   
 
There are no known secondary chromosomal changes and no pattern of other chromosome aberrations.   
  
 +
<blockquote class="blockedit">
 +
<center><span style="color:Maroon">'''End of V4 Section'''</span>
 +
----
 
</blockquote>
 
</blockquote>
==Gene Mutations (SNV / INDEL)==
+
==Gene Mutations (SNV/INDEL)==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.'') </span>
 
  
 +
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span>
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
!Gene; Genetic Alteration!!'''Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other)'''!!'''Prevalence (COSMIC /  TCGA / Other)'''!!'''Concomitant Mutations'''!!'''Mutually Exclusive Mutations'''
+
!Gene!!'''Genetic Alteration'''!!'''Tumor Suppressor Gene, Oncogene, Other'''!!'''Prevalence -'''
!'''Diagnostic Significance (Yes, No or Unknown)'''
+
'''Common >20%, Recurrent 5-20% or Rare <5% (Disease)'''
!Prognostic Significance (Yes, No or Unknown)
+
!'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T  '''
!Therapeutic Significance (Yes, No or Unknown)
+
!'''Established Clinical Significance Per Guidelines - Yes or No (Source)'''
!Notes
+
!'''Clinical Relevance Details/Other Notes'''
 
|-
 
|-
|EXAMPLE: TP53; Variable LOF mutations
+
|<span class="blue-text">EXAMPLE:</span>''EGFR''
  
EXAMPLE:
+
<br />
 
+
|<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations
EGFR; Exon 20 mutations
+
|<span class="blue-text">EXAMPLE:</span> Oncogene
 
+
|<span class="blue-text">EXAMPLE:</span> Common (lung cancer)
EXAMPLE: BRAF; Activating mutations
+
|<span class="blue-text">EXAMPLE:</span> T
|EXAMPLE: TSG
+
|<span class="blue-text">EXAMPLE:</span> Yes (NCCN)
|EXAMPLE: 20% (COSMIC)
+
|<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
 
+
|-
EXAMPLE: 30% (add Reference)
+
|<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations
|EXAMPLE: IDH1 R123H
+
<br />
|EXAMPLE: EGFR amplification
+
|<span class="blue-text">EXAMPLE:</span> Variable LOF mutations
 +
|<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene
 +
|<span class="blue-text">EXAMPLE:</span> Common (breast cancer)
 +
|<span class="blue-text">EXAMPLE:</span> P
 +
|
 +
|<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
 +
|-
 +
|<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations
 +
|<span class="blue-text">EXAMPLE:</span> Activating mutations
 +
|<span class="blue-text">EXAMPLE:</span> Oncogene
 +
|<span class="blue-text">EXAMPLE:</span> Common (melanoma)
 +
|<span class="blue-text">EXAMPLE:</span> T
 +
|
 +
|
 +
|-
 +
|
 +
|
 +
|
 +
|
 
|
 
|
 
|
 
|
 
|
 
|
|EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).
+
|}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
<br />
 
|}
 
Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
 
 
 
  
<blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}
+
<blockquote class="blockedit">{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote>
  
 
Given the rarity of the entity, there are no known recurrent aberrations. For the largest series studied, most cases were negative for mutations. However, some cases showed variants in genes associated with myeloid malignancies (ASXL1, RUNX1, SRSF2, TET2, BCOR) and one patient with B-ALL transformation showed variants in ETV6 and TP53<ref name=":2" />
 
Given the rarity of the entity, there are no known recurrent aberrations. For the largest series studied, most cases were negative for mutations. However, some cases showed variants in genes associated with myeloid malignancies (ASXL1, RUNX1, SRSF2, TET2, BCOR) and one patient with B-ALL transformation showed variants in ETV6 and TP53<ref name=":2" />
 
===Other Mutations===
 
===Other Mutations===
 +
<blockquote class="blockedit">
 +
<center><span style="color:Maroon">'''End of V4 Section'''</span>
 +
----
 
</blockquote>
 
</blockquote>
 
==Epigenomic Alterations==
 
==Epigenomic Alterations==
Line 269: Line 322:
 
==Genes and Main Pathways Involved==
 
==Genes and Main Pathways Involved==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table.'')</span>
+
 
 +
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Please include references throughout the table. Do not delete the table.)''</span>
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
|-
 
|-
|EXAMPLE: BRAF and MAP2K1; Activating mutations
+
|<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations
|EXAMPLE: MAPK signaling
+
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
|EXAMPLE: Increased cell growth and proliferation
+
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
 +
|-
 +
|<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations
 +
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
 +
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
 
|-
 
|-
|EXAMPLE: CDKN2A; Inactivating mutations
+
|<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations
|EXAMPLE: Cell cycle regulation
+
|<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling
|EXAMPLE: Unregulated cell division
+
|<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program
 
|-
 
|-
|EXAMPLE:  KMT2C and ARID1A; Inactivating mutations
+
|
|EXAMPLE:  Histone modification, chromatin remodeling
+
|
|EXAMPLE:  Abnormal gene expression program
+
|
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}
+
<blockquote class="blockedit">{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}</blockquote>
  
 
''PCM1'' (pericentriolar material 1) is a protein present in cytoplasmic granules and can be found in association with the centrosome. ''PCM1'' is indirectly responsible for microtubule anchoring, which is necessary for a variety of cellular functions, including intracellular transport and cell division. The gene is located at band 8p22 and includes 41 exons.<sup>5</sup>
 
''PCM1'' (pericentriolar material 1) is a protein present in cytoplasmic granules and can be found in association with the centrosome. ''PCM1'' is indirectly responsible for microtubule anchoring, which is necessary for a variety of cellular functions, including intracellular transport and cell division. The gene is located at band 8p22 and includes 41 exons.<sup>5</sup>
Line 293: Line 351:
 
''JAK2'' (janus kinase 2) is a tyrosine kinase responsible for activation of the ''JAK-STAT'' pathway by mediating tyrosine phosphorylation, leading to cell proliferation and differentiation. Constitutive activation of ''JAK2'' can result from chromosomal translocations and lead to uncontrolled proliferation of hematopoietic cells. The gene is located at band 9p24.1 and includes 25 exons.<sup>6</sup>
 
''JAK2'' (janus kinase 2) is a tyrosine kinase responsible for activation of the ''JAK-STAT'' pathway by mediating tyrosine phosphorylation, leading to cell proliferation and differentiation. Constitutive activation of ''JAK2'' can result from chromosomal translocations and lead to uncontrolled proliferation of hematopoietic cells. The gene is located at band 9p24.1 and includes 25 exons.<sup>6</sup>
  
The PCM1-JAK2 fusion product retains the coiled-coil domains of ''PCM1'' and the activating tyrosine kinase domain of ''JAK2''. Thus PCM1-JAK2 fusion produces an aberrant tyrosine kinase that results in constitutive activation of the JAK2–STAT pathway<ref name=":1" />
+
The PCM1-JAK2 fusion product retains the coiled-coil domains of ''PCM1'' and the activating tyrosine kinase domain of ''JAK2''. Thus PCM1-JAK2 fusion produces an aberrant tyrosine kinase that results in constitutive activation of the JAK2–STAT pathway<ref name=":1">{{Cite journal|last=Hoeller|first=Sylvia|last2=Walz|first2=Christoph|last3=Reiter|first3=Andreas|last4=Dirnhofer|first4=Stephan|last5=Tzankov|first5=Alexandar|date=2011|title=PCM1–JAK2-fusion: a potential treatment target in myelodysplastic–myeloproliferative and other hemato-lymphoid neoplasms|url=http://www.tandfonline.com/doi/full/10.1517/14728222.2011.538683|journal=Expert Opinion on Therapeutic Targets|language=en|volume=15|issue=1|pages=53–62|doi=10.1517/14728222.2011.538683|issn=1472-8222}}</ref>
  
 +
<blockquote class="blockedit">
 +
<center><span style="color:Maroon">'''End of V4 Section'''</span>
 +
----
 
</blockquote>
 
</blockquote>
 
==Genetic Diagnostic Testing Methods==
 
==Genetic Diagnostic Testing Methods==
Line 310: Line 371:
 
==Links==
 
==Links==
  
[[Myeloid/Lymphoid Neoplasms with Eosinophilia and Rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2]]
+
[[HAEM4:Myeloid/Lymphoid Neoplasms with Eosinophilia and Rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2]]
  
 
[[PCM1]]
 
[[PCM1]]
Line 317: Line 378:
  
 
==References==
 
==References==
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted.''</span> <span style="color:#0070C0">''If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">) </span> <references />
+
(use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references />
  
'''
+
<br />
  
 
==Notes==
 
==Notes==
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage)Additional global feedback or concerns are also welcome.
+
<nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representativeWhen pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
 +
 
 +
Prior Author(s): 
 +
 
 +
       
 
<nowiki>*</nowiki>''Citation of this Page'': “Myeloid/lymphoid neoplasm with JAK2 rearrangement”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Myeloid/lymphoid_neoplasm_with_JAK2_rearrangement</nowiki>.
 
<nowiki>*</nowiki>''Citation of this Page'': “Myeloid/lymphoid neoplasm with JAK2 rearrangement”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Myeloid/lymphoid_neoplasm_with_JAK2_rearrangement</nowiki>.
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases M]]
+
[[Category:HAEM5]]
 +
[[Category:DISEASE]]
 +
[[Category:Diseases M]]

Latest revision as of 12:42, 24 March 2025

Haematolymphoid Tumours (WHO Classification, 5th ed.)

editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Myeloid/Lymphoid Neoplasms with PCM1-JAK2.

(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)

Primary Author(s)*

Jessica Snider, M.D. and Daynna J. Wolff, PhD

WHO Classification of Disease

Structure Disease
Book Haematolymphoid Tumours (5th ed.)
Category Myeloid proliferations and neoplasms
Family Myeloid/lymphoid neoplasms
Type Myeloid/lymphoid neoplasms with eosinophilia and defining gene rearrangement
Subtype(s) Myeloid/lymphoid neoplasm with JAK2 rearrangement

WHO Essential and Desirable Genetic Diagnostic Criteria

(Instructions: The table will have the diagnostic criteria from the WHO book autocompleted; remove any non-genetics related criteria. If applicable, add text about other classification systems that define this entity and specify how the genetics-related criteria differ.)

WHO Essential Criteria (Genetics)*
WHO Desirable Criteria (Genetics)*
Other Classification

*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.

Related Terminology

(Instructions: The table will have the related terminology from the WHO autocompleted.)

Acceptable
Not Recommended

Gene Rearrangements

Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Driver Gene Fusion(s) and Common Partner Genes Molecular Pathogenesis Typical Chromosomal Alteration(s) Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE: ABL1 EXAMPLE: BCR::ABL1 EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: Common (CML) EXAMPLE: D, P, T EXAMPLE: Yes (WHO, NCCN) EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference).

EXAMPLE: CIC EXAMPLE: CIC::DUX4 EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. EXAMPLE: t(4;19)(q25;q13) EXAMPLE: Common (CIC-rearranged sarcoma) EXAMPLE: D EXAMPLE:

DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references).

EXAMPLE: ALK EXAMPLE: ELM4::ALK


Other fusion partners include KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1

EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. EXAMPLE: N/A EXAMPLE: Rare (Lung adenocarcinoma) EXAMPLE: T EXAMPLE:

Both balanced and unbalanced forms are observed by FISH (add references).

EXAMPLE: ABL1 EXAMPLE: N/A EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. EXAMPLE: N/A EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) EXAMPLE: D, P, T
editv4:Chromosomal Rearrangements (Gene Fusions)
The content below was from the old template. Please incorporate above.
Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence
         t(8;9)(p22;p24.1) 3'JAK2 / 5'PCM1 der(8) rare
End of V4 Section


editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).
Please incorporate this section into the relevant tables found in:
  • Chromosomal Rearrangements (Gene Fusions)
  • Individual Region Genomic Gain/Loss/LOH
  • Characteristic Chromosomal Patterns
  • Gene Mutations (SNV/INDEL)

Most patients present with MPN with variable degrees of eosinophilia in blood and/or bone marrow, frequent marrow fibrosis, and large aggregates of immature erythroid precursors, and clinically exhibit hepatosplenomegagly and lymphadenopathy[1]. However, diagnosis may be difficult in cases without obvious eosinophilia.

Due to the variations in presentation, the prognosis is mainly dependent on the phase at presentation, but generally tends to have an aggressive course1. There currently are no approved therapies for PCM1/JAK2-mediated myeloid/lymphoid neoplasm with eosinophilia; however, JAK2 inhibitors have been approved for other hematopoietic neoplasms with constitutively activated JAK2 kinases.2

End of V4 Section

Individual Region Genomic Gain/Loss/LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)

Chr # Gain, Loss, Amp, LOH Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] Relevant Gene(s) Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE: No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8

EXAMPLE:

Unknown

EXAMPLE: D, P EXAMPLE:

Common recurrent secondary finding for t(8;21) (add references).

EXAMPLE:

17

EXAMPLE: Amp EXAMPLE:

17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb]

EXAMPLE:

ERBB2

EXAMPLE: D, P, T EXAMPLE:

Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined.

editv4:Genomic Gain/Loss/LOH
The content below was from the old template. Please incorporate above.

There are no known recurrent genomic loss/gain or LOH pattern associated with entity.

End of V4 Section

Characteristic Chromosomal or Other Global Mutational Patterns

Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Chromosomal Pattern Molecular Pathogenesis Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:

Co-deletion of 1p and 18q

EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). EXAMPLE: Common (Oligodendroglioma) EXAMPLE: D, P
EXAMPLE:

Microsatellite instability - hypermutated

EXAMPLE: Common (Endometrial carcinoma) EXAMPLE: P, T
editv4:Characteristic Chromosomal Aberrations / Patterns
The content below was from the old template. Please incorporate above.

There are no known secondary chromosomal changes and no pattern of other chromosome aberrations.

End of V4 Section

Gene Mutations (SNV/INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)

Gene Genetic Alteration Tumor Suppressor Gene, Oncogene, Other Prevalence -

Common >20%, Recurrent 5-20% or Rare <5% (Disease)

Diagnostic, Prognostic, and Therapeutic Significance - D, P, T   Established Clinical Significance Per Guidelines - Yes or No (Source) Clinical Relevance Details/Other Notes
EXAMPLE:EGFR


EXAMPLE: Exon 18-21 activating mutations EXAMPLE: Oncogene EXAMPLE: Common (lung cancer) EXAMPLE: T EXAMPLE: Yes (NCCN) EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references).
EXAMPLE: TP53; Variable LOF mutations


EXAMPLE: Variable LOF mutations EXAMPLE: Tumor Supressor Gene EXAMPLE: Common (breast cancer) EXAMPLE: P EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer.
EXAMPLE: BRAF; Activating mutations EXAMPLE: Activating mutations EXAMPLE: Oncogene EXAMPLE: Common (melanoma) EXAMPLE: T

Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

editv4:Gene Mutations (SNV/INDEL)
The content below was from the old template. Please incorporate above.

Given the rarity of the entity, there are no known recurrent aberrations. For the largest series studied, most cases were negative for mutations. However, some cases showed variants in genes associated with myeloid malignancies (ASXL1, RUNX1, SRSF2, TET2, BCOR) and one patient with B-ALL transformation showed variants in ETV6 and TP53[1]

Other Mutations

End of V4 Section

Epigenomic Alterations

There are no known epigenomic modifiers.

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE: KMT2C and ARID1A; Inactivating mutations EXAMPLE: Histone modification, chromatin remodeling EXAMPLE: Abnormal gene expression program
editv4:Genes and Main Pathways Involved
The content below was from the old template. Please incorporate above.

PCM1 (pericentriolar material 1) is a protein present in cytoplasmic granules and can be found in association with the centrosome. PCM1 is indirectly responsible for microtubule anchoring, which is necessary for a variety of cellular functions, including intracellular transport and cell division. The gene is located at band 8p22 and includes 41 exons.5

JAK2 (janus kinase 2) is a tyrosine kinase responsible for activation of the JAK-STAT pathway by mediating tyrosine phosphorylation, leading to cell proliferation and differentiation. Constitutive activation of JAK2 can result from chromosomal translocations and lead to uncontrolled proliferation of hematopoietic cells. The gene is located at band 9p24.1 and includes 25 exons.6

The PCM1-JAK2 fusion product retains the coiled-coil domains of PCM1 and the activating tyrosine kinase domain of JAK2. Thus PCM1-JAK2 fusion produces an aberrant tyrosine kinase that results in constitutive activation of the JAK2–STAT pathway[2]

End of V4 Section

Genetic Diagnostic Testing Methods

Diagnosis of this entity is made when a chromosome analysis showing a t(8;9) correlates with the clinical and morphological phenotype of the patient and/or when the fusion is confirmed by ancillary testing. FISH with a dual color, dual fusion probe for PCM1-JAK2 and sequencing of RNA to detect the functional fusion are the most commonly used methods to confirm this diagnosis. FISH with a JAK2 break-apart probe may also provide useful information to confirm a diagnosis.

However, because the clinical presentation can vary and this disease can show many overlapping morphological features of other entities, the PCM1-JAK2 fusion or 8;9 translocation may be detected without overt suspicion. Therefore, agnostic genomic methods such as large panels of RNA fusions known to be associated with myeloid or lymphoid malignancies, whole exome/genome sequencing and occasionally chromosomal microarray analysis may provide evidence for this diagnosis.

Familial Forms

No familial forms have been documented.

Additional Information

Links

HAEM4:Myeloid/Lymphoid Neoplasms with Eosinophilia and Rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2

PCM1

JAK2

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)

  1. Jump up to: 1.0 1.1 Tang, Guilin; et al. (2019). "Hematopoietic neoplasms with 9p24/JAK2 rearrangement: a multicenter study". Modern Pathology. 32 (4): 490–498. doi:10.1038/s41379-018-0165-9. ISSN 0893-3952.
  2. Hoeller, Sylvia; et al. (2011). "PCM1–JAK2-fusion: a potential treatment target in myelodysplastic–myeloproliferative and other hemato-lymphoid neoplasms". Expert Opinion on Therapeutic Targets. 15 (1): 53–62. doi:10.1517/14728222.2011.538683. ISSN 1472-8222.


Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative.  When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.

Prior Author(s):


*Citation of this Page: “Myeloid/lymphoid neoplasm with JAK2 rearrangement”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 03/24/2025, https://ccga.io/index.php/HAEM5:Myeloid/lymphoid_neoplasm_with_JAK2_rearrangement.