Difference between revisions of "HAEM5:Acute basophilic leukaemia"
[checked revision] | [checked revision] |
Bailey.Glen (talk | contribs) |
Bailey.Glen (talk | contribs) |
||
Line 7: | Line 7: | ||
}}</blockquote> | }}</blockquote> | ||
− | <span style="color:#0070C0">(General Instructions – The | + | <span style="color:#0070C0">(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ <u>HGVS-based nomenclature for variants</u>], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>].)</span> |
==Primary Author(s)*== | ==Primary Author(s)*== | ||
Line 102: | Line 102: | ||
|} | |} | ||
− | == | + | ==WHO Essential and Desirable Genetic Diagnostic Criteria== |
+ | <span style="color:#0070C0">(''Instructions: The table will have the diagnostic criteria from the WHO book <u>autocompleted</u>; remove any <u>non</u>-genetics related criteria. If applicable, add text about other classification'' ''systems that define this entity and specify how the genetics-related criteria differ.'')</span> | ||
+ | {| class="wikitable" | ||
+ | |+ | ||
+ | |WHO Essential Criteria (Genetics)* | ||
+ | | | ||
+ | |- | ||
+ | |WHO Desirable Criteria (Genetics)* | ||
+ | | | ||
+ | |- | ||
+ | |Other Classification | ||
+ | | | ||
+ | |} | ||
+ | <nowiki>*</nowiki>Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the [https://tumourclassification.iarc.who.int/home <u>WHO Classification of Tumours</u>]. | ||
+ | ==Related Terminology== | ||
+ | <span style="color:#0070C0">(''Instructions: The table will have the related terminology from the WHO <u>autocompleted</u>.)''</span> | ||
+ | {| class="wikitable" | ||
+ | |+ | ||
+ | |Acceptable | ||
+ | | | ||
+ | |- | ||
+ | |Not Recommended | ||
+ | | | ||
+ | |} | ||
+ | |||
+ | ==Gene Rearrangements== | ||
− | |||
+ | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
− | ! | + | !Driver Gene!!Fusion(s) and Common Partner Genes!!Molecular Pathogenesis!!Typical Chromosomal Alteration(s) |
− | !Diagnostic Significance | + | !Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
− | ! | + | !Diagnostic, Prognostic, and Therapeutic Significance - D, P, T |
− | ! | + | !Established Clinical Significance Per Guidelines - Yes or No (Source) |
− | + | !Clinical Relevance Details/Other Notes | |
+ | |- | ||
+ | |<span class="blue-text">EXAMPLE:</span> ''ABL1''||<span class="blue-text">EXAMPLE:</span> ''BCR::ABL1''||<span class="blue-text">EXAMPLE:</span> The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1.||<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2) | ||
+ | |<span class="blue-text">EXAMPLE:</span> Common (CML) | ||
+ | |<span class="blue-text">EXAMPLE:</span> D, P, T | ||
+ | |<span class="blue-text">EXAMPLE:</span> Yes (WHO, NCCN) | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). | ||
|- | |- | ||
− | |<span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> ''CIC'' |
− | <span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> ''CIC::DUX4'' |
− | | | + | |<span class="blue-text">EXAMPLE:</span> Typically, the last exon of ''CIC'' is fused to ''DUX4''. The fusion breakpoint in ''CIC'' is usually intra-exonic and removes an inhibitory sequence, upregulating ''PEA3'' genes downstream of ''CIC'' including ''ETV1'', ''ETV4'', and ''ETV5''. |
− | + | |<span class="blue-text">EXAMPLE:</span> t(4;19)(q25;q13) | |
− | | | + | |<span class="blue-text">EXAMPLE:</span> Common (CIC-rearranged sarcoma) |
+ | |<span class="blue-text">EXAMPLE:</span> D | ||
+ | | | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | ''DUX4'' has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |
− | |} | + | |- |
− | + | |<span class="blue-text">EXAMPLE:</span> ''ALK'' | |
+ | |<span class="blue-text">EXAMPLE:</span> ''ELM4::ALK'' | ||
+ | |||
+ | |||
+ | Other fusion partners include ''KIF5B, NPM1, STRN, TFG, TPM3, CLTC, KLC1'' | ||
+ | |<span class="blue-text">EXAMPLE:</span> Fusions result in constitutive activation of the ''ALK'' tyrosine kinase. The most common ''ALK'' fusion is ''EML4::ALK'', with breakpoints in intron 19 of ''ALK''. At the transcript level, a variable (5’) partner gene is fused to 3’ ''ALK'' at exon 20. Rarely, ''ALK'' fusions contain exon 19 due to breakpoints in intron 18. | ||
+ | |<span class="blue-text">EXAMPLE:</span> N/A | ||
+ | |<span class="blue-text">EXAMPLE:</span> Rare (Lung adenocarcinoma) | ||
+ | |<span class="blue-text">EXAMPLE:</span> T | ||
+ | | | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | |||
+ | Both balanced and unbalanced forms are observed by FISH (add references). | ||
+ | |- | ||
+ | |<span class="blue-text">EXAMPLE:</span> ''ABL1'' | ||
+ | |<span class="blue-text">EXAMPLE:</span> N/A | ||
+ | |<span class="blue-text">EXAMPLE:</span> Intragenic deletion of exons 2–7 in ''EGFR'' removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | ||
+ | |<span class="blue-text">EXAMPLE:</span> N/A | ||
+ | |<span class="blue-text">EXAMPLE:</span> Recurrent (IDH-wildtype Glioblastoma) | ||
+ | |<span class="blue-text">EXAMPLE:</span> D, P, T | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | |} | ||
<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> | <blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Line 157: | Line 222: | ||
---- | ---- | ||
</blockquote> | </blockquote> | ||
− | ==Individual Region Genomic Gain / Loss / LOH== | + | ==Individual Region Genomic Gain/Loss/LOH== |
− | |||
+ | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.'') </span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
− | !Chr #!!Gain | + | !Chr #!!'''Gain, Loss, Amp, LOH'''!!'''Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size]'''!!'''Relevant Gene(s)''' |
− | !Diagnostic | + | !'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T''' |
− | + | !'''Established Clinical Significance Per Guidelines - Yes or No (Source)''' | |
− | ! | + | !'''Clinical Relevance Details/Other Notes''' |
− | !Notes | ||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | |||
7 | 7 | ||
|<span class="blue-text">EXAMPLE:</span> Loss | |<span class="blue-text">EXAMPLE:</span> Loss | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | chr7 | |
− | chr7 | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | Unknown | |
− | + | |<span class="blue-text">EXAMPLE:</span> D, P | |
− | + | |<span class="blue-text">EXAMPLE:</span> No | |
− | | | ||
− | |No | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). | |
− | Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add | ||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | |||
8 | 8 | ||
|<span class="blue-text">EXAMPLE:</span> Gain | |<span class="blue-text">EXAMPLE:</span> Gain | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | chr8 | |
− | + | |<span class="blue-text">EXAMPLE:</span> | |
+ | Unknown | ||
+ | |<span class="blue-text">EXAMPLE:</span> D, P | ||
+ | | | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | Common recurrent secondary finding for t(8;21) (add references). | ||
+ | |- | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | 17 | ||
+ | |<span class="blue-text">EXAMPLE:</span> Amp | ||
+ | |<span class="blue-text">EXAMPLE:</span> | ||
+ | 17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | ''ERBB2'' | |
− | + | |<span class="blue-text">EXAMPLE:</span> D, P, T | |
− | + | | | |
− | | | ||
− | | | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | Amplification of ''ERBB2'' is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | |
− | + | |- | |
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
|} | |} | ||
Line 212: | Line 286: | ||
---- | ---- | ||
</blockquote> | </blockquote> | ||
− | ==Characteristic Chromosomal Patterns== | + | ==Characteristic Chromosomal or Other Global Mutational Patterns== |
− | |||
+ | Put your text here and fill in the table <span style="color:#0070C0">(I''nstructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.'')</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Chromosomal Pattern | !Chromosomal Pattern | ||
− | ! | + | !Molecular Pathogenesis |
− | !Prognostic Significance | + | !'''Prevalence -''' |
− | ! | + | '''Common >20%, Recurrent 5-20% or Rare <5% (Disease)''' |
− | !Notes | + | !'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T''' |
+ | !'''Established Clinical Significance Per Guidelines - Yes or No (Source)''' | ||
+ | !'''Clinical Relevance Details/Other Notes''' | ||
|- | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | |||
Co-deletion of 1p and 18q | Co-deletion of 1p and 18q | ||
− | | | + | |<span class="blue-text">EXAMPLE:</span> See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). |
− | | | + | |<span class="blue-text">EXAMPLE:</span> Common (Oligodendroglioma) |
− | | | + | |<span class="blue-text">EXAMPLE:</span> D, P |
+ | | | ||
+ | | | ||
+ | |- | ||
|<span class="blue-text">EXAMPLE:</span> | |<span class="blue-text">EXAMPLE:</span> | ||
− | + | Microsatellite instability - hypermutated | |
− | + | | | |
+ | |<span class="blue-text">EXAMPLE:</span> Common (Endometrial carcinoma) | ||
+ | |<span class="blue-text">EXAMPLE:</span> P, T | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
|} | |} | ||
Line 243: | Line 332: | ||
---- | ---- | ||
</blockquote> | </blockquote> | ||
− | ==Gene Mutations (SNV / INDEL)== | + | ==Gene Mutations (SNV/INDEL)== |
− | |||
+ | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.'') </span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
− | !Gene | + | !Gene!!'''Genetic Alteration'''!!'''Tumor Suppressor Gene, Oncogene, Other'''!!'''Prevalence -''' |
− | !''' | + | '''Common >20%, Recurrent 5-20% or Rare <5% (Disease)''' |
− | ! | + | !'''Diagnostic, Prognostic, and Therapeutic Significance - D, P, T ''' |
− | + | !'''Established Clinical Significance Per Guidelines - Yes or No (Source)''' | |
− | + | !'''Clinical Relevance Details/Other Notes''' | |
|- | |- | ||
− | |<span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span>''EGFR'' |
− | <span class="blue-text">EXAMPLE:</span> | + | <br /> |
− | + | |<span class="blue-text">EXAMPLE:</span> Exon 18-21 activating mutations | |
− | + | |<span class="blue-text">EXAMPLE:</span> Oncogene | |
− | + | |<span class="blue-text">EXAMPLE:</span> Common (lung cancer) | |
− | <span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> T |
− | |<span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> Yes (NCCN) |
− | |<span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). |
− | + | |- | |
− | <span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> ''TP53''; Variable LOF mutations |
− | |<span class="blue-text">EXAMPLE:</span> | + | <br /> |
− | |<span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> Variable LOF mutations |
+ | |<span class="blue-text">EXAMPLE:</span> Tumor Supressor Gene | ||
+ | |<span class="blue-text">EXAMPLE:</span> Common (breast cancer) | ||
+ | |<span class="blue-text">EXAMPLE:</span> P | ||
+ | | | ||
+ | |<span class="blue-text">EXAMPLE:</span> >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | ||
+ | |- | ||
+ | |<span class="blue-text">EXAMPLE:</span> ''BRAF''; Activating mutations | ||
+ | |<span class="blue-text">EXAMPLE:</span> Activating mutations | ||
+ | |<span class="blue-text">EXAMPLE:</span> Oncogene | ||
+ | |<span class="blue-text">EXAMPLE:</span> Common (melanoma) | ||
+ | |<span class="blue-text">EXAMPLE:</span> T | ||
+ | | | ||
+ | | | ||
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
+ | | | ||
| | | | ||
| | | | ||
| | | | ||
− | + | |}Note: A more extensive list of mutations can be found in [https://www.cbioportal.org/ <u>cBioportal</u>], [https://cancer.sanger.ac.uk/cosmic <u>COSMIC</u>], and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content. | |
− | |||
− | |} | ||
− | Note: A more extensive list of mutations can be found in | ||
− | |||
<blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote> | <blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}</blockquote> | ||
Line 295: | Line 398: | ||
==Genes and Main Pathways Involved== | ==Genes and Main Pathways Involved== | ||
− | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: | + | |
+ | Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Please include references throughout the table. Do not delete the table.)''</span> | ||
{| class="wikitable sortable" | {| class="wikitable sortable" | ||
|- | |- | ||
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | !Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome | ||
|- | |- | ||
− | |<span class="blue-text">EXAMPLE:</span> BRAF and MAP2K1; Activating mutations | + | |<span class="blue-text">EXAMPLE:</span> ''BRAF'' and ''MAP2K1''; Activating mutations |
|<span class="blue-text">EXAMPLE:</span> MAPK signaling | |<span class="blue-text">EXAMPLE:</span> MAPK signaling | ||
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation | |<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation | ||
|- | |- | ||
− | |<span class="blue-text">EXAMPLE:</span> CDKN2A; Inactivating mutations | + | |<span class="blue-text">EXAMPLE:</span> ''CDKN2A''; Inactivating mutations |
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation | |<span class="blue-text">EXAMPLE:</span> Cell cycle regulation | ||
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division | |<span class="blue-text">EXAMPLE:</span> Unregulated cell division | ||
|- | |- | ||
− | |<span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> ''KMT2C'' and ''ARID1A''; Inactivating mutations |
− | |<span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> Histone modification, chromatin remodeling |
− | |<span class="blue-text">EXAMPLE:</span> | + | |<span class="blue-text">EXAMPLE:</span> Abnormal gene expression program |
+ | |- | ||
+ | | | ||
+ | | | ||
+ | | | ||
|} | |} | ||
Line 338: | Line 446: | ||
==References== | ==References== | ||
− | (use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking | + | (use the "Cite" icon at the top of the page) <span style="color:#0070C0">(''Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted''</span><span style="color:#0070C0">''.''</span><span style="color:#0070C0">)</span> <references /> |
''' | ''' | ||
==Notes== | ==Notes== | ||
− | <nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA | + | <nowiki>*</nowiki>Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the [[Leadership|''<u>Associate Editor</u>'']] or other CCGA representative. When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author. |
+ | |||
+ | Prior Author(s): | ||
+ | |||
+ | |||
<nowiki>*</nowiki>''Citation of this Page'': “Acute basophilic leukaemia”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Acute_basophilic_leukaemia</nowiki>. | <nowiki>*</nowiki>''Citation of this Page'': “Acute basophilic leukaemia”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated {{REVISIONMONTH}}/{{REVISIONDAY}}/{{REVISIONYEAR}}, <nowiki>https://ccga.io/index.php/HAEM5:Acute_basophilic_leukaemia</nowiki>. | ||
[[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases A]] | [[Category:HAEM5]][[Category:DISEASE]][[Category:Diseases A]] |
Revision as of 13:36, 10 February 2025
Haematolymphoid Tumours (WHO Classification, 5th ed.)
![]() | This page is under construction |
editContent Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition ClassificationThis page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Acute Basophilic Leukemia.
(General Instructions – The focus of these pages is the clinically significant genetic alterations in each disease type. This is based on up-to-date knowledge from multiple resources such as PubMed and the WHO classification books. The CCGA is meant to be a supplemental resource to the WHO classification books; the CCGA captures in a continually updated wiki-stye manner the current genetics/genomics knowledge of each disease, which evolves more rapidly than books can be revised and published. If the same disease is described in multiple WHO classification books, the genetics-related information for that disease will be consolidated into a single main page that has this template (other pages would only contain a link to this main page). Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column in a table, click nearby within the table and select the > symbol that appears. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support.)
Primary Author(s)*
Ashwini Yenamandra PhD FACMG
WHO Classification of Disease
Structure | Disease |
---|---|
Book | Haematolymphoid Tumours (5th ed.) |
Category | Myeloid proliferations and neoplasms |
Family | Acute myeloid leukaemia |
Type | Acute myeloid leukaemia, defined by differentiation |
Subtype(s) | Acute basophilic leukaemia |
Definition / Description of Disease
Acute basophilic leukemia is a rare subtype of acute myeloid leukemia (AML) with primary differentiation to basophils[1]. This is a distinct entity in the World Health Organization (WHO) classification system within the section of HAEM4:Acute Myeloid Leukemia (AML), Not Otherwise Specified[1]. This entity does not meet the criteria for inclusion in any of the other AML groups (i.e. AML with Recurrent Genetic Abnormalities, AML with Myelodysplasia-Related Changes, or Therapy-Related Myeloid Neoplasms). Due to the rarity of this disease, consistent genetic diagnostic criteria have not been established. Clinical progression is often rapid and associated with poor prognosis[2].
Synonyms / Terminology
Previously described as “basophilic leukemia”, the 2008 WHO classification of neoplastic diseases was the first edition to define this disorder as a separate entity of unspecified acute myeloid leukemia, now recognized as ABL[1][2][3].
Epidemiology / Prevalence
This is a rare disease with a small number of reported cases, accounting for less than 2% of all hematopoietic malignancies[1].
Clinical Features
Put your text here and fill in the table (Instruction: Can include references in the table. Do not delete table.)
Signs and Symptoms | EXAMPLE: Asymptomatic (incidental finding on complete blood counts)
EXAMPLE: B-symptoms (weight loss, fever, night sweats) EXAMPLE: Fatigue EXAMPLE: Lymphadenopathy (uncommon) |
Laboratory Findings | EXAMPLE: Cytopenias
EXAMPLE: Lymphocytosis (low level) |
editv4:Clinical FeaturesThe content below was from the old template. Please incorporate above.
Clinical features include bone marrow failure and may or may not have circulating blasts. Cutaneous involvement, oraganomegaly, lytic lesions and symptoms related to hyperhistanemia may be present[1].
End of V4 Section
Sites of Involvement
Bone marrow, Skin
Morphologic Features
ABL features include immature basophils in the peripheral blood and blast cells with basophilic granules in the bone marrow[1][2]. These granules show metachromasia when stained with toluidine blue[1][2]. Identification of the coarse basophilic granules may be the first step in diagnosis of this rare disorder[1][2][4][5]. Blasts are usually negative with Sudan Black B (SBB), myeloperoxidase (MPO), and neuron–specific enolase (NSE). Diffuse staining with acid phosphatase and peroxidase activity may be present in some cases[1].
Immunophenotype
Immunophenotyping is positive for myeloid markers such as CD9, CD13, CD33, CD123, CD203c, CD11b and HLA-DR and negative for CD117 in some cases[1]. The blasts may stain positive for toluidine blue, PAS, acid phosphatase, and myeloperoxidase. Immunophenotyping and electron microscopy may also identify a basophilic lineage; this is especially crucial to differentiate basophilic cells from closely related mast cells.
Finding | Marker |
---|---|
Positive (universal) | CD13, CD33, CD34, Class II HLA-DR |
Positive (subset) | Mature basophils can be CD25+ and CD117-, mast cells can be CD117+ and CD25+, blasts can be CD9+ and TdT+. |
Negative (universal) | No B or T -lymphoid markers |
Negative (subset) | CD117 |
WHO Essential and Desirable Genetic Diagnostic Criteria
(Instructions: The table will have the diagnostic criteria from the WHO book autocompleted; remove any non-genetics related criteria. If applicable, add text about other classification systems that define this entity and specify how the genetics-related criteria differ.)
WHO Essential Criteria (Genetics)* | |
WHO Desirable Criteria (Genetics)* | |
Other Classification |
*Note: These are only the genetic/genomic criteria. Additional diagnostic criteria can be found in the WHO Classification of Tumours.
Related Terminology
(Instructions: The table will have the related terminology from the WHO autocompleted.)
Acceptable | |
Not Recommended |
Gene Rearrangements
Put your text here and fill in the table (Instructions: Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Driver Gene | Fusion(s) and Common Partner Genes | Molecular Pathogenesis | Typical Chromosomal Alteration(s) | Prevalence -Common >20%, Recurrent 5-20% or Rare <5% (Disease) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|---|
EXAMPLE: ABL1 | EXAMPLE: BCR::ABL1 | EXAMPLE: The pathogenic derivative is the der(22) resulting in fusion of 5’ BCR and 3’ABL1. | EXAMPLE: t(9;22)(q34;q11.2) | EXAMPLE: Common (CML) | EXAMPLE: D, P, T | EXAMPLE: Yes (WHO, NCCN) | EXAMPLE:
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference). BCR::ABL1 is generally favorable in CML (add reference). |
EXAMPLE: CIC | EXAMPLE: CIC::DUX4 | EXAMPLE: Typically, the last exon of CIC is fused to DUX4. The fusion breakpoint in CIC is usually intra-exonic and removes an inhibitory sequence, upregulating PEA3 genes downstream of CIC including ETV1, ETV4, and ETV5. | EXAMPLE: t(4;19)(q25;q13) | EXAMPLE: Common (CIC-rearranged sarcoma) | EXAMPLE: D | EXAMPLE:
DUX4 has many homologous genes; an alternate translocation in a minority of cases is t(10;19), but this is usually indistinguishable from t(4;19) by short-read sequencing (add references). | |
EXAMPLE: ALK | EXAMPLE: ELM4::ALK
|
EXAMPLE: Fusions result in constitutive activation of the ALK tyrosine kinase. The most common ALK fusion is EML4::ALK, with breakpoints in intron 19 of ALK. At the transcript level, a variable (5’) partner gene is fused to 3’ ALK at exon 20. Rarely, ALK fusions contain exon 19 due to breakpoints in intron 18. | EXAMPLE: N/A | EXAMPLE: Rare (Lung adenocarcinoma) | EXAMPLE: T | EXAMPLE:
Both balanced and unbalanced forms are observed by FISH (add references). | |
EXAMPLE: ABL1 | EXAMPLE: N/A | EXAMPLE: Intragenic deletion of exons 2–7 in EGFR removes the ligand-binding domain, resulting in a constitutively active tyrosine kinase with downstream activation of multiple oncogenic pathways. | EXAMPLE: N/A | EXAMPLE: Recurrent (IDH-wildtype Glioblastoma) | EXAMPLE: D, P, T | ||
editv4:Chromosomal Rearrangements (Gene Fusions)The content below was from the old template. Please incorporate above.
No consistent chromosomal abnormalities have been reported in ABL due to its rarity[6][7][8]. Rearrangement of MYB/GATA1 with t(X;6)(p11;q23) has been reported in four male infants[7][8]. The fusion gene leads to downregulation of MYB, upregulation of GATA1, and commits myeloid cells to the granulocyte lineage and blocks their differentiation[7][8].
Chromosomal Rearrangement | Genes in Fusion (5’ or 3’ Segments) | Pathogenic Derivative | Prevalence |
---|---|---|---|
t(X;6)(p11;q23) | 5'MYB / 3'GATA1 | der(X) | Rare (4 cases) |
End of V4 Section
editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).Please incorporate this section into the relevant tables found in:
- Chromosomal Rearrangements (Gene Fusions)
- Individual Region Genomic Gain/Loss/LOH
- Characteristic Chromosomal Patterns
- Gene Mutations (SNV/INDEL)
Diagnosis of this disease may allow for appropriate prophylactic measures, including H1 and H2 blockers and proton pump inhibitors and steroids, to be initiated in an attempt to minimize its protean complications[1].
This disease is prognostically unfavorable and may have unique therapeutic complications, including anaphylaxis and life threatening cardiac involvement. A low remission rate and short survival are characteristic of ABL[1][6][7].
End of V4 Section
Individual Region Genomic Gain/Loss/LOH
Put your text here and fill in the table (Instructions: Includes aberrations not involving gene rearrangements. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Can refer to CGC workgroup tables as linked on the homepage if applicable. Please include references throughout the table. Do not delete the table.)
Chr # | Gain, Loss, Amp, LOH | Minimal Region Cytoband and/or Genomic Coordinates [Genome Build; Size] | Relevant Gene(s) | Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|
EXAMPLE:
7 |
EXAMPLE: Loss | EXAMPLE:
chr7 |
EXAMPLE:
Unknown |
EXAMPLE: D, P | EXAMPLE: No | EXAMPLE:
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference). Monosomy 7/7q deletion is associated with a poor prognosis in AML (add references). |
EXAMPLE:
8 |
EXAMPLE: Gain | EXAMPLE:
chr8 |
EXAMPLE:
Unknown |
EXAMPLE: D, P | EXAMPLE:
Common recurrent secondary finding for t(8;21) (add references). | |
EXAMPLE:
17 |
EXAMPLE: Amp | EXAMPLE:
17q12; chr17:39,700,064-39,728,658 [hg38; 28.6 kb] |
EXAMPLE:
ERBB2 |
EXAMPLE: D, P, T | EXAMPLE:
Amplification of ERBB2 is associated with HER2 overexpression in HER2 positive breast cancer (add references). Add criteria for how amplification is defined. | |
editv4:Genomic Gain/Loss/LOHThe content below was from the old template. Please incorporate above.
Not applicable.
End of V4 Section
Characteristic Chromosomal or Other Global Mutational Patterns
Put your text here and fill in the table (Instructions: Included in this category are alterations such as hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis; microsatellite instability; homologous recombination deficiency; mutational signature pattern; etc. Details on clinical significance such as prognosis and other important information can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Chromosomal Pattern | Molecular Pathogenesis | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|
EXAMPLE:
Co-deletion of 1p and 18q |
EXAMPLE: See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference). | EXAMPLE: Common (Oligodendroglioma) | EXAMPLE: D, P | ||
EXAMPLE:
Microsatellite instability - hypermutated |
EXAMPLE: Common (Endometrial carcinoma) | EXAMPLE: P, T | |||
editv4:Characteristic Chromosomal Aberrations / PatternsThe content below was from the old template. Please incorporate above.
A few male patients have been reported with massive hyperdiploid or tetraploid karyotypes[2][3][6][9]. Monosomy 7 was reported in a rare case[10].
End of V4 Section
Gene Mutations (SNV/INDEL)
Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent or common as well either disease defining and/or clinically significant. If a gene has multiple mechanisms depending on the type or site of the alteration, add multiple entries in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Details on clinical significance such as prognosis and other important information such as concomitant and mutually exclusive mutations can be provided in the notes section. Please include references throughout the table. Do not delete the table.)
Gene | Genetic Alteration | Tumor Suppressor Gene, Oncogene, Other | Prevalence -
Common >20%, Recurrent 5-20% or Rare <5% (Disease) |
Diagnostic, Prognostic, and Therapeutic Significance - D, P, T | Established Clinical Significance Per Guidelines - Yes or No (Source) | Clinical Relevance Details/Other Notes |
---|---|---|---|---|---|---|
EXAMPLE:EGFR
|
EXAMPLE: Exon 18-21 activating mutations | EXAMPLE: Oncogene | EXAMPLE: Common (lung cancer) | EXAMPLE: T | EXAMPLE: Yes (NCCN) | EXAMPLE: Exons 18, 19, and 21 mutations are targetable for therapy. Exon 20 T790M variants cause resistance to first generation TKI therapy and are targetable by second and third generation TKIs (add references). |
EXAMPLE: TP53; Variable LOF mutations
|
EXAMPLE: Variable LOF mutations | EXAMPLE: Tumor Supressor Gene | EXAMPLE: Common (breast cancer) | EXAMPLE: P | EXAMPLE: >90% are somatic; rare germline alterations associated with Li-Fraumeni syndrome (add reference). Denotes a poor prognosis in breast cancer. | |
EXAMPLE: BRAF; Activating mutations | EXAMPLE: Activating mutations | EXAMPLE: Oncogene | EXAMPLE: Common (melanoma) | EXAMPLE: T | ||
Note: A more extensive list of mutations can be found in cBioportal, COSMIC, and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.
editv4:Gene Mutations (SNV/INDEL)The content below was from the old template. Please incorporate above.
Not applicable.
Other Mutations
Not applicable.
End of V4 Section
Epigenomic Alterations
Not applicable.
Genes and Main Pathways Involved
Put your text here and fill in the table (Instructions: Please include references throughout the table. Do not delete the table.)
Gene; Genetic Alteration | Pathway | Pathophysiologic Outcome |
---|---|---|
EXAMPLE: BRAF and MAP2K1; Activating mutations | EXAMPLE: MAPK signaling | EXAMPLE: Increased cell growth and proliferation |
EXAMPLE: CDKN2A; Inactivating mutations | EXAMPLE: Cell cycle regulation | EXAMPLE: Unregulated cell division |
EXAMPLE: KMT2C and ARID1A; Inactivating mutations | EXAMPLE: Histone modification, chromatin remodeling | EXAMPLE: Abnormal gene expression program |
editv4:Genes and Main Pathways InvolvedThe content below was from the old template. Please incorporate above.
The molecular mechanism is not completely understood.
End of V4 Section
Genetic Diagnostic Testing Methods
Morphology and IHC.
Familial Forms
Not applicable.
Additional Information
Differential Diagnosis - The differential diagnosis includes blast phase of MPN, other subtypes of AML with basophilia such as AML with t(6;9) (p23;q34), mast cell leukemia and a subtype of ALL with course granules[1]. The clinical features and cytogenetic pattern will distinguish cases presenting de novo from cases that result from transformation of chronic myelogenous leukemia and other subtypes of AML with basophilia[1]. Immunological markers distinguish between granulated ALL and ABL, and light microscopic cytochemistry for myeloperoxidase and electron microscopy will distinguish ABL from other leukemias[1].
Links
Put your links here
References
(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking where you want to insert the reference, selecting the “Cite” icon at the top of the wiki page, and using the “Automatic” tab option to search by PMID to select the reference to insert. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference. To insert the same reference again later in the page, select the “Cite” icon and “Re-use” to find the reference; DO NOT insert the same reference twice using the “Automatic” tab as it will be treated as two separate references. The reference list in this section will be automatically generated and sorted.)
- ↑ Jump up to: 1.00 1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08 1.09 1.10 1.11 1.12 1.13 1.14 Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. IARC Press: Lyon, France, p164-165.
- ↑ Jump up to: 2.0 2.1 2.2 2.3 2.4 2.5 Kritharis, Athena; et al. (2011). "Acute basophilic leukemia associated with loss of gene ETV6 and protean complications". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 29 (21): e623–626. doi:10.1200/JCO.2010.34.5710. ISSN 1527-7755. PMID 21576634.
- ↑ Jump up to: 3.0 3.1 Duchayne, E.; et al. (1999). "Diagnosis of acute basophilic leukemia". Leukemia & Lymphoma. 32 (3–4): 269–278. doi:10.3109/10428199909167387. ISSN 1042-8194. PMID 10037024.
- ↑ Iyer, Renuka V.; et al. (2004). "Massive hyperdiploidy and tetraploidy in acute myelocytic leukemia and myelodysplastic syndrome". Cancer Genetics and Cytogenetics. 148 (1): 29–34. doi:10.1016/s0165-4608(03)00214-0. ISSN 0165-4608. PMID 14697638.
- ↑ Béné, M.-C.; et al. (2006). "Near-tetraploid acute myeloid leukemias: an EGIL retrospective study of 25 cases". Leukemia. 20 (4): 725–728. doi:10.1038/sj.leu.2404110. ISSN 0887-6924. PMID 16437146.
- ↑ Jump up to: 6.0 6.1 6.2 Yenamandra A, et al., (2014). Acute basophilic leukemia, a rare subset of de novo AML with an abnormal tetraploid karyotype. JSM Cell Dev Biol 2(1):1007. Available online at https://www.academia.edu/28924195/Editorial_Article_Acute_Basophilic_Leukemia_a_Rare_Subset_of_De_Novo_AML_with_an_Abnormal_Tetraploid_Karyotype.
- ↑ Jump up to: 7.0 7.1 7.2 7.3 Dastugue, N.; et al. (1997). "Acute basophilic leukaemia and translocation t(X;6)(p11;q23)". British Journal of Haematology. 98 (1): 170–176. doi:10.1046/j.1365-2141.1997.1562968.x. ISSN 0007-1048. PMID 9233581.
- ↑ Jump up to: 8.0 8.1 8.2 Quelen, Cathy; et al. (2011). "Identification of a transforming MYB-GATA1 fusion gene in acute basophilic leukemia: a new entity in male infants". Blood. 117 (21): 5719–5722. doi:10.1182/blood-2011-01-333013. ISSN 1528-0020. PMID 21474671.
- ↑ Kim, Bo Hyun; et al. (2013). "Two cases of near-tetraploidy in acute leukemias of ambiguous lineage". Annals of Laboratory Medicine. 33 (5): 371–374. doi:10.3343/alm.2013.33.5.371. ISSN 2234-3814. PMC 3756245. PMID 24003431.
- ↑ Shin, So Youn; et al. (2007). "Monosomy 7 as the sole abnormality of an acute basophilic leukemia". Cancer Genetics and Cytogenetics. 172 (2): 168–171. doi:10.1016/j.cancergencyto.2006.09.016. ISSN 0165-4608. PMID 17213028.
Notes
*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the Associate Editor or other CCGA representative. When pages have a major update, the new author will be acknowledged at the beginning of the page, and those who contributed previously will be acknowledged below as a prior author.
Prior Author(s):
*Citation of this Page: “Acute basophilic leukaemia”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 02/10/2025, https://ccga.io/index.php/HAEM5:Acute_basophilic_leukaemia.