Difference between revisions of "HAEM5:Acute promyelocytic leukaemia with PML::RARA fusion"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][checked revision]
(Undo revision 14810 by Bailey.Glen (talk))
Tag: Undo
Line 1: Line 1:
 
{{DISPLAYTITLE:Acute promyelocytic leukaemia with PML::RARA fusion}}
 
{{DISPLAYTITLE:Acute promyelocytic leukaemia with PML::RARA fusion}}
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]]
+
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]]
  
 
{{Under Construction}}
 
{{Under Construction}}
Line 7: Line 7:
 
}}</blockquote>
 
}}</blockquote>
  
<span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click nearby within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span>
+
<span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples). Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span>
  
 
==Primary Author(s)*==
 
==Primary Author(s)*==
Line 38: Line 38:
 
==Clinical Features==
 
==Clinical Features==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span>
+
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span>
 
{| class="wikitable"
 
{| class="wikitable"
 
|'''Signs and Symptoms'''
 
|'''Signs and Symptoms'''
|<span class="blue-text">EXAMPLE:</span> Asymptomatic (incidental finding on complete blood counts)
+
|EXAMPLE Asymptomatic (incidental finding on complete blood counts)
  
<span class="blue-text">EXAMPLE:</span> B-symptoms (weight loss, fever, night sweats)
+
EXAMPLE B-symptoms (weight loss, fever, night sweats)
  
<span class="blue-text">EXAMPLE:</span> Fatigue
+
EXAMPLE Fatigue
  
<span class="blue-text">EXAMPLE:</span> Lymphadenopathy (uncommon)
+
EXAMPLE Lymphadenopathy (uncommon)
 
|-
 
|-
 
|'''Laboratory Findings'''
 
|'''Laboratory Findings'''
|<span class="blue-text">EXAMPLE:</span> Cytopenias
+
|EXAMPLE Cytopenias
  
<span class="blue-text">EXAMPLE:</span> Lymphocytosis (low level)
+
EXAMPLE Lymphocytosis (low level)
 
|}
 
|}
  
  
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
+
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}
 
Typical (hypergranular) and microgranular (hypogranular) APL are frequently associated with disseminated intravascular coagulation (DIC).  In contrast to typical APL, microgranular APL is associated with increased counts of leukocytes which have rapid doubling time<ref name=":0" />.
 
Typical (hypergranular) and microgranular (hypogranular) APL are frequently associated with disseminated intravascular coagulation (DIC).  In contrast to typical APL, microgranular APL is associated with increased counts of leukocytes which have rapid doubling time<ref name=":0" />.
  
Line 97: Line 97:
 
!Notes
 
!Notes
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)||<span class="blue-text">EXAMPLE:</span> 3'ABL1 / 5'BCR||<span class="blue-text">EXAMPLE:</span> der(22)||<span class="blue-text">EXAMPLE:</span> 20% (COSMIC)
+
|EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 20% (COSMIC)
<span class="blue-text">EXAMPLE:</span> 30% (add reference)
+
EXAMPLE 30% (add reference)
 
|Yes
 
|Yes
 
|No
 
|No
 
|Yes
 
|Yes
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
 
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
Line 108: Line 108:
 
 
  
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
+
<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}
 
This AML subtype is classified based on the presence of a PML-RARA fusion, which results from fusion of the 5’ portion of PML at 15q24.1 and the 3’ portion of RARA at 17q21.1<ref>{{Cite journal|last=de Thé|first=H.|last2=Chomienne|first2=C.|last3=Lanotte|first3=M.|last4=Degos|first4=L.|last5=Dejean|first5=A.|date=1990|title=The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus|url=https://www.ncbi.nlm.nih.gov/pubmed/2170850|journal=Nature|volume=347|issue=6293|pages=558–561|doi=10.1038/347558a0|issn=0028-0836|pmid=2170850}}</ref>. 5'PML-3'RARA transcript is expressed in all cases, and 5'RARA-3'PML transcript is found in 2/3 of cases<ref>{{Cite journal|last=Warrell|first=R. P.|last2=de Thé|first2=H.|last3=Wang|first3=Z. Y.|last4=Degos|first4=L.|date=1993|title=Acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/8515790|journal=The New England Journal of Medicine|volume=329|issue=3|pages=177–189|doi=10.1056/NEJM199307153290307|issn=0028-4793|pmid=8515790}}</ref>. Rare cases of APL have cryptic t(15;17)(q24.1;q21.1) such as submicroscopic insertion of RARA into PML leading to the expression of the PML-RARA transcript or three way translocations involving chromosomes 15 and 17 with an additional chromosome<ref name=":1">{{Cite journal|last=Grimwade|first=D.|last2=Gorman|first2=P.|last3=Duprez|first3=E.|last4=Howe|first4=K.|last5=Langabeer|first5=S.|last6=Oliver|first6=F.|last7=Walker|first7=H.|last8=Culligan|first8=D.|last9=Waters|first9=J.|date=1997|title=Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/9389704|journal=Blood|volume=90|issue=12|pages=4876–4885|issn=0006-4971|pmid=9389704}}</ref>.  Several variant translocations involving RARA have also been identified, including t(11;17) and t(5;17)<ref name=":1" />. The 4th edition revision to the World Health Organization renamed APL with t(15;17)(q24.1;q21.1) as APL with PML-RARA<ref name=":0" /><ref>{{Cite journal|last=Arber|first=Daniel A.|last2=Orazi|first2=Attilio|last3=Hasserjian|first3=Robert|last4=Thiele|first4=Jürgen|last5=Borowitz|first5=Michael J.|last6=Le Beau|first6=Michelle M.|last7=Bloomfield|first7=Clara D.|last8=Cazzola|first8=Mario|last9=Vardiman|first9=James W.|date=2016|title=The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/27069254|journal=Blood|volume=127|issue=20|pages=2391–2405|doi=10.1182/blood-2016-03-643544|issn=1528-0020|pmid=27069254}}</ref>.  
 
This AML subtype is classified based on the presence of a PML-RARA fusion, which results from fusion of the 5’ portion of PML at 15q24.1 and the 3’ portion of RARA at 17q21.1<ref>{{Cite journal|last=de Thé|first=H.|last2=Chomienne|first2=C.|last3=Lanotte|first3=M.|last4=Degos|first4=L.|last5=Dejean|first5=A.|date=1990|title=The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus|url=https://www.ncbi.nlm.nih.gov/pubmed/2170850|journal=Nature|volume=347|issue=6293|pages=558–561|doi=10.1038/347558a0|issn=0028-0836|pmid=2170850}}</ref>. 5'PML-3'RARA transcript is expressed in all cases, and 5'RARA-3'PML transcript is found in 2/3 of cases<ref>{{Cite journal|last=Warrell|first=R. P.|last2=de Thé|first2=H.|last3=Wang|first3=Z. Y.|last4=Degos|first4=L.|date=1993|title=Acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/8515790|journal=The New England Journal of Medicine|volume=329|issue=3|pages=177–189|doi=10.1056/NEJM199307153290307|issn=0028-4793|pmid=8515790}}</ref>. Rare cases of APL have cryptic t(15;17)(q24.1;q21.1) such as submicroscopic insertion of RARA into PML leading to the expression of the PML-RARA transcript or three way translocations involving chromosomes 15 and 17 with an additional chromosome<ref name=":1">{{Cite journal|last=Grimwade|first=D.|last2=Gorman|first2=P.|last3=Duprez|first3=E.|last4=Howe|first4=K.|last5=Langabeer|first5=S.|last6=Oliver|first6=F.|last7=Walker|first7=H.|last8=Culligan|first8=D.|last9=Waters|first9=J.|date=1997|title=Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/9389704|journal=Blood|volume=90|issue=12|pages=4876–4885|issn=0006-4971|pmid=9389704}}</ref>.  Several variant translocations involving RARA have also been identified, including t(11;17) and t(5;17)<ref name=":1" />. The 4th edition revision to the World Health Organization renamed APL with t(15;17)(q24.1;q21.1) as APL with PML-RARA<ref name=":0" /><ref>{{Cite journal|last=Arber|first=Daniel A.|last2=Orazi|first2=Attilio|last3=Hasserjian|first3=Robert|last4=Thiele|first4=Jürgen|last5=Borowitz|first5=Michael J.|last6=Le Beau|first6=Michelle M.|last7=Bloomfield|first7=Clara D.|last8=Cazzola|first8=Mario|last9=Vardiman|first9=James W.|date=2016|title=The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/27069254|journal=Blood|volume=127|issue=20|pages=2391–2405|doi=10.1182/blood-2016-03-643544|issn=1528-0020|pmid=27069254}}</ref>.  
  
Line 121: Line 121:
  
  
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Please incorporate this section into the relevant tables found in:
+
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
 
* Chromosomal Rearrangements (Gene Fusions)
 
* Chromosomal Rearrangements (Gene Fusions)
 
* Individual Region Genomic Gain/Loss/LOH
 
* Individual Region Genomic Gain/Loss/LOH
Line 131: Line 131:
 
==Individual Region Genomic Gain / Loss / LOH==
 
==Individual Region Genomic Gain / Loss / LOH==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.'') </span>
+
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.'') </span>
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 141: Line 141:
 
!Notes
 
!Notes
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
7
 
7
|<span class="blue-text">EXAMPLE:</span> Loss
+
|EXAMPLE Loss
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
chr7:1- 159,335,973 [hg38]
 
chr7:1- 159,335,973 [hg38]
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
chr7
 
chr7
Line 154: Line 154:
 
|Yes
 
|Yes
 
|No
 
|No
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
8
 
8
|<span class="blue-text">EXAMPLE:</span> Gain
+
|EXAMPLE Gain
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
chr8:1-145,138,636 [hg38]
 
chr8:1-145,138,636 [hg38]
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
chr8
 
chr8
Line 171: Line 171:
 
|No
 
|No
 
|No
 
|No
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
Common recurrent secondary finding for t(8;21) (add reference).
 
Common recurrent secondary finding for t(8;21) (add reference).
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
+
<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}
  
 
Not applicable
 
Not applicable
Line 183: Line 183:
 
==Characteristic Chromosomal Patterns==
 
==Characteristic Chromosomal Patterns==
  
Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.'')</span>
+
Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis'')</span>
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 193: Line 193:
 
!Notes
 
!Notes
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE
  
 
Co-deletion of 1p and 18q
 
Co-deletion of 1p and 18q
Line 199: Line 199:
 
|No
 
|No
 
|No
 
|No
|<span class="blue-text">EXAMPLE:</span>
+
|EXAMPLE:
  
 
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
 
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
+
<blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}
  
 
Not applicable
 
Not applicable
Line 211: Line 211:
 
==Gene Mutations (SNV / INDEL)==
 
==Gene Mutations (SNV / INDEL)==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.'') </span>
+
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.'') </span>
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 221: Line 221:
 
!Notes
 
!Notes
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> TP53; Variable LOF mutations
+
|EXAMPLE: TP53; Variable LOF mutations
  
<span class="blue-text">EXAMPLE:</span>
+
EXAMPLE:
  
 
EGFR; Exon 20 mutations
 
EGFR; Exon 20 mutations
  
<span class="blue-text">EXAMPLE:</span> BRAF; Activating mutations
+
EXAMPLE: BRAF; Activating mutations
|<span class="blue-text">EXAMPLE:</span> TSG
+
|EXAMPLE: TSG
|<span class="blue-text">EXAMPLE:</span> 20% (COSMIC)
+
|EXAMPLE: 20% (COSMIC)
  
<span class="blue-text">EXAMPLE:</span> 30% (add Reference)
+
EXAMPLE: 30% (add Reference)
|<span class="blue-text">EXAMPLE:</span> IDH1 R123H
+
|EXAMPLE: IDH1 R123H
|<span class="blue-text">EXAMPLE:</span> EGFR amplification
+
|EXAMPLE: EGFR amplification
 
|
 
|
 
|
 
|
 
|
 
|
|<span class="blue-text">EXAMPLE:</span>  Excludes hairy cell leukemia (HCL) (add reference).
+
|EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).
 
<br />
 
<br />
 
|}
 
|}
Line 243: Line 243:
  
  
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
+
<blockquote class='blockedit'>{{Box-round|title=v4:Gene Mutations (SNV/INDEL)|The content below was from the old template. Please incorporate above.}}
 
There is not specific information on mutations related to this subtype of AML at this time.
 
There is not specific information on mutations related to this subtype of AML at this time.
 
===Other Mutations===
 
===Other Mutations===
Line 264: Line 264:
 
==Genes and Main Pathways Involved==
 
==Genes and Main Pathways Involved==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table. Do not delete table.'')</span>
+
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table.'')</span>
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> BRAF and MAP2K1; Activating mutations
+
|EXAMPLE: BRAF and MAP2K1; Activating mutations
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
+
|EXAMPLE: MAPK signaling
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
+
|EXAMPLE: Increased cell growth and proliferation
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span> CDKN2A; Inactivating mutations
+
|EXAMPLE: CDKN2A; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
+
|EXAMPLE: Cell cycle regulation
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
+
|EXAMPLE: Unregulated cell division
 
|-
 
|-
|<span class="blue-text">EXAMPLE:</span>  KMT2C and ARID1A; Inactivating mutations
+
|EXAMPLE:  KMT2C and ARID1A; Inactivating mutations
|<span class="blue-text">EXAMPLE:</span>  Histone modification, chromatin remodeling
+
|EXAMPLE:  Histone modification, chromatin remodeling
|<span class="blue-text">EXAMPLE:</span>  Abnormal gene expression program
+
|EXAMPLE:  Abnormal gene expression program
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
+
<blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}
  
 
The protein encoded by the PML (promyelocytic leukemia) gene is a member of the tripartite motif (TRIM) family and it functions as a transcription factor and tumor suppressor.  PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs) and it interacts with a large number of proteins including p53 and has been implicated in several cellular functions such as cellular senescence, apoptosis, and hematopoietic stem cell maintenance<ref>{{Cite journal|last=Pearson|first=M.|last2=Carbone|first2=R.|last3=Sebastiani|first3=C.|last4=Cioce|first4=M.|last5=Fagioli|first5=M.|last6=Saito|first6=S.|last7=Higashimoto|first7=Y.|last8=Appella|first8=E.|last9=Minucci|first9=S.|date=2000|title=PML regulates p53 acetylation and premature senescence induced by oncogenic Ras|url=https://www.ncbi.nlm.nih.gov/pubmed/10910364|journal=Nature|volume=406|issue=6792|pages=207–210|doi=10.1038/35018127|issn=0028-0836|pmid=10910364}}</ref><ref>{{Cite journal|last=Bernardi|first=Rosa|last2=Pandolfi|first2=Pier Paolo|date=2007|title=Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies|url=https://www.ncbi.nlm.nih.gov/pubmed/17928811|journal=Nature Reviews. Molecular Cell Biology|volume=8|issue=12|pages=1006–1016|doi=10.1038/nrm2277|issn=1471-0080|pmid=17928811}}</ref>. The gene RARA (Retinoic acid receptor, alpha) encodes a nuclear retinoic acid receptor which regulates transcription in a ligand-dependent manner<ref>{{Cite journal|last=Melnick|first=A.|last2=Licht|first2=J. D.|date=1999|title=Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/10233871|journal=Blood|volume=93|issue=10|pages=3167–3215|issn=0006-4971|pmid=10233871}}</ref>. The fusion of PML and RARA results in expression of a hybrid protein with altered functions. This fusion protein deregulates transcriptional control such as RAR targets and disrupts PML nuclear bodies<ref>{{Cite journal|last=de Thé|first=Hugues|last2=Chen|first2=Zhu|date=2010|title=Acute promyelocytic leukaemia: novel insights into the mechanisms of cure|url=https://www.ncbi.nlm.nih.gov/pubmed/20966922|journal=Nature Reviews. Cancer|volume=10|issue=11|pages=775–783|doi=10.1038/nrc2943|issn=1474-1768|pmid=20966922}}</ref>.
 
The protein encoded by the PML (promyelocytic leukemia) gene is a member of the tripartite motif (TRIM) family and it functions as a transcription factor and tumor suppressor.  PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs) and it interacts with a large number of proteins including p53 and has been implicated in several cellular functions such as cellular senescence, apoptosis, and hematopoietic stem cell maintenance<ref>{{Cite journal|last=Pearson|first=M.|last2=Carbone|first2=R.|last3=Sebastiani|first3=C.|last4=Cioce|first4=M.|last5=Fagioli|first5=M.|last6=Saito|first6=S.|last7=Higashimoto|first7=Y.|last8=Appella|first8=E.|last9=Minucci|first9=S.|date=2000|title=PML regulates p53 acetylation and premature senescence induced by oncogenic Ras|url=https://www.ncbi.nlm.nih.gov/pubmed/10910364|journal=Nature|volume=406|issue=6792|pages=207–210|doi=10.1038/35018127|issn=0028-0836|pmid=10910364}}</ref><ref>{{Cite journal|last=Bernardi|first=Rosa|last2=Pandolfi|first2=Pier Paolo|date=2007|title=Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies|url=https://www.ncbi.nlm.nih.gov/pubmed/17928811|journal=Nature Reviews. Molecular Cell Biology|volume=8|issue=12|pages=1006–1016|doi=10.1038/nrm2277|issn=1471-0080|pmid=17928811}}</ref>. The gene RARA (Retinoic acid receptor, alpha) encodes a nuclear retinoic acid receptor which regulates transcription in a ligand-dependent manner<ref>{{Cite journal|last=Melnick|first=A.|last2=Licht|first2=J. D.|date=1999|title=Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia|url=https://www.ncbi.nlm.nih.gov/pubmed/10233871|journal=Blood|volume=93|issue=10|pages=3167–3215|issn=0006-4971|pmid=10233871}}</ref>. The fusion of PML and RARA results in expression of a hybrid protein with altered functions. This fusion protein deregulates transcriptional control such as RAR targets and disrupts PML nuclear bodies<ref>{{Cite journal|last=de Thé|first=Hugues|last2=Chen|first2=Zhu|date=2010|title=Acute promyelocytic leukaemia: novel insights into the mechanisms of cure|url=https://www.ncbi.nlm.nih.gov/pubmed/20966922|journal=Nature Reviews. Cancer|volume=10|issue=11|pages=775–783|doi=10.1038/nrc2943|issn=1474-1768|pmid=20966922}}</ref>.

Revision as of 14:50, 6 September 2024

Haematolymphoid Tumours (5th ed.)

editHAEM5 Conversion Notes
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:Acute Promyelocytic Leukemia (APL) with PML-RARA.

(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples). Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)

Primary Author(s)*

Yiming Zhong, Ph.D., Megan Piazza, Ph.D., and Shashi Shetty, Ph.D.

Cancer Category / Type

Acute Myeloid Leukaemia

Cancer Sub-Classification / Subtype

Acute Promyelocytic Leukemia (APL) with PML-RARA

Definition / Description of Disease

This is a distinct entity in the World Health Organization (WHO) classification system, and associated French-American-British (FAB) classification is acute promyelocytic leukemia (APL, M3)[1].

Synonyms / Terminology

APL with t(15;17)(q24.1;q21.1)

AML with t(15;17)(q24.1;q21.1)

Epidemiology / Prevalence

Accounts for 5-8% of AML, may occur at any age, but predominantly in adult in mid-life[1].

Clinical Features

Put your text here and fill in the table (Instruction: Can include references in the table)

Signs and Symptoms EXAMPLE Asymptomatic (incidental finding on complete blood counts)

EXAMPLE B-symptoms (weight loss, fever, night sweats)

EXAMPLE Fatigue

EXAMPLE Lymphadenopathy (uncommon)

Laboratory Findings EXAMPLE Cytopenias

EXAMPLE Lymphocytosis (low level)


editv4:Clinical Features
The content below was from the old template. Please incorporate above.

Typical (hypergranular) and microgranular (hypogranular) APL are frequently associated with disseminated intravascular coagulation (DIC). In contrast to typical APL, microgranular APL is associated with increased counts of leukocytes which have rapid doubling time[1].

Sites of Involvement

Bone marrow

Morphologic Features

The abnormal promyelocytes of typical APL have irregular and variable nuclear size and shapes. They are frequently kidney-shaped or bilobed. The cytoplasm is characterized by large granules and stains bright pink, red or purple in Romanowsky staining. In most cases, there are bundles of Auer rods (“faggot cells”) in the cytoplasm. Myeloblasts with single Auer rods may also be present. Auer rods in typical APL are usually larger than those in other types of AML. Microgranular APL is characterized by apparent paucity or absence of granules and predominantly bilobed nuclear shape. The myeloperoxidase (MPO) reaction for both typical and microgranular APL is positive[1].

Immunophenotype

The immunophenotype has been well characterized[1][2][3].

Finding Marker
Positive (universal) CD13, CD33, CD117, myeloperoxidase (MPO)
Positive (subset) CD2 (microgranular APL), CD34 (microgranular APL), CD56 (20% of APL, associated with a worse outcome)
Negative (universal) HLA-DR, CD15, CD11a, CD11b, CD11c, CD18
Negative (subset) CD2 (typical APL), CD34 (typical APL)

Chromosomal Rearrangements (Gene Fusions)

Put your text here and fill in the table

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE t(9;22)(q34;q11.2) EXAMPLE 3'ABL1 / 5'BCR EXAMPLE der(22) EXAMPLE 20% (COSMIC)

EXAMPLE 30% (add reference)

Yes No Yes EXAMPLE

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).


editv4:Chromosomal Rearrangements (Gene Fusions)
The content below was from the old template. Please incorporate above.

This AML subtype is classified based on the presence of a PML-RARA fusion, which results from fusion of the 5’ portion of PML at 15q24.1 and the 3’ portion of RARA at 17q21.1[4]. 5'PML-3'RARA transcript is expressed in all cases, and 5'RARA-3'PML transcript is found in 2/3 of cases[5]. Rare cases of APL have cryptic t(15;17)(q24.1;q21.1) such as submicroscopic insertion of RARA into PML leading to the expression of the PML-RARA transcript or three way translocations involving chromosomes 15 and 17 with an additional chromosome[6]. Several variant translocations involving RARA have also been identified, including t(11;17) and t(5;17)[6]. The 4th edition revision to the World Health Organization renamed APL with t(15;17)(q24.1;q21.1) as APL with PML-RARA[1][7].

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence
t(15;17)(q24.1;q21.1) 5'PML / 3'RARA der(15) 5-8% of AML


editv4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).
Please incorporate this section into the relevant tables found in:
  • Chromosomal Rearrangements (Gene Fusions)
  • Individual Region Genomic Gain/Loss/LOH
  • Characteristic Chromosomal Patterns
  • Gene Mutations (SNV/INDEL)

APL can be differentiated from other types of AML based on microscopic examination of the blood, bone marrow, or biopsy as well as detection of the PML/RARA fusion gene. The prognosis in APL treated with all-trans retinoic acid (ATRA) and arsenic trioxide is favorable, and relapsed or refractory APL cases show a generally good response with arsenic trioxide therapy[8][9]. Expression of CD56 is associated with poor prognosis, while the prognostic significance of FLT3 -ITD mutations remains unclear[10][11].

Individual Region Genomic Gain / Loss / LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.)

Chr # Gain / Loss / Amp / LOH Minimal Region Genomic Coordinates [Genome Build] Minimal Region Cytoband Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE

7

EXAMPLE Loss EXAMPLE

chr7:1- 159,335,973 [hg38]

EXAMPLE

chr7

Yes Yes No EXAMPLE

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).

EXAMPLE

8

EXAMPLE Gain EXAMPLE

chr8:1-145,138,636 [hg38]

EXAMPLE

chr8

No No No EXAMPLE

Common recurrent secondary finding for t(8;21) (add reference).

editv4:Genomic Gain/Loss/LOH
The content below was from the old template. Please incorporate above.

Not applicable

Characteristic Chromosomal Patterns

Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis)

Chromosomal Pattern Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE

Co-deletion of 1p and 18q

Yes No No EXAMPLE:

See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).

editv4:Characteristic Chromosomal Aberrations / Patterns
The content below was from the old template. Please incorporate above.

Not applicable

Gene Mutations (SNV / INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.)

Gene; Genetic Alteration Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) Prevalence (COSMIC / TCGA / Other) Concomitant Mutations Mutually Exclusive Mutations Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE: TP53; Variable LOF mutations

EXAMPLE:

EGFR; Exon 20 mutations

EXAMPLE: BRAF; Activating mutations

EXAMPLE: TSG EXAMPLE: 20% (COSMIC)

EXAMPLE: 30% (add Reference)

EXAMPLE: IDH1 R123H EXAMPLE: EGFR amplification EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).


Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.


editv4:Gene Mutations (SNV/INDEL)
The content below was from the old template. Please incorporate above.

There is not specific information on mutations related to this subtype of AML at this time.

Other Mutations

Type Gene/Region/Other
Concomitant Mutations 34-45% of APL have FLT3 mutations[1].
Secondary Mutations About 40% of APL cases have secondary cytogenetic abnormalities with trisomy 8 being the most frequent (10-15%)[1].
Mutually Exclusive Not applicable

Epigenomic Alterations

Not applicable

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Can include references in the table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE:  KMT2C and ARID1A; Inactivating mutations EXAMPLE:  Histone modification, chromatin remodeling EXAMPLE:  Abnormal gene expression program
editv4:Genes and Main Pathways Involved
The content below was from the old template. Please incorporate above.

The protein encoded by the PML (promyelocytic leukemia) gene is a member of the tripartite motif (TRIM) family and it functions as a transcription factor and tumor suppressor. PML is the core component of subnuclear structures called PML nuclear bodies (PML-NBs) and it interacts with a large number of proteins including p53 and has been implicated in several cellular functions such as cellular senescence, apoptosis, and hematopoietic stem cell maintenance[12][13]. The gene RARA (Retinoic acid receptor, alpha) encodes a nuclear retinoic acid receptor which regulates transcription in a ligand-dependent manner[14]. The fusion of PML and RARA results in expression of a hybrid protein with altered functions. This fusion protein deregulates transcriptional control such as RAR targets and disrupts PML nuclear bodies[15].

Genetic Diagnostic Testing Methods

Karyotype, FISH, RT-PCR

Familial Forms

Not applicable

Additional Information

Not applicable

Links

PML

RARA

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Arber DA, et al., (2017). Acute myeloid leukaemia with recurrent genetic abnormalities, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p134-136.
  2. Dong, Henry Y.; et al. (2011). "Flow cytometry rapidly identifies all acute promyelocytic leukemias with high specificity independent of underlying cytogenetic abnormalities". American Journal of Clinical Pathology. 135 (1): 76–84. doi:10.1309/AJCPW9TSLQNCZAVT. ISSN 1943-7722. PMID 21173127.
  3. Gorczyca, Wojciech (2012). "Acute promyelocytic leukemia: four distinct patterns by flow cytometry immunophenotyping". Polish Journal of Pathology: Official Journal of the Polish Society of Pathologists. 63 (1): 8–17. ISSN 1233-9687. PMID 22535601.
  4. de Thé, H.; et al. (1990). "The t(15;17) translocation of acute promyelocytic leukaemia fuses the retinoic acid receptor alpha gene to a novel transcribed locus". Nature. 347 (6293): 558–561. doi:10.1038/347558a0. ISSN 0028-0836. PMID 2170850.
  5. Warrell, R. P.; et al. (1993). "Acute promyelocytic leukemia". The New England Journal of Medicine. 329 (3): 177–189. doi:10.1056/NEJM199307153290307. ISSN 0028-4793. PMID 8515790.
  6. 6.0 6.1 Grimwade, D.; et al. (1997). "Characterization of cryptic rearrangements and variant translocations in acute promyelocytic leukemia". Blood. 90 (12): 4876–4885. ISSN 0006-4971. PMID 9389704.
  7. Arber, Daniel A.; et al. (2016). "The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia". Blood. 127 (20): 2391–2405. doi:10.1182/blood-2016-03-643544. ISSN 1528-0020. PMID 27069254.
  8. "Huang ME, Ye YC, Chen SR, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72(2):567-572". Blood. 128 (26): 3017. 2016. doi:10.1182/blood-2016-11-750182. ISSN 1528-0020. PMID 28034863.
  9. de Thé, Hugues; et al. (2017). "Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure". Cancer Cell. 32 (5): 552–560. doi:10.1016/j.ccell.2017.10.002. ISSN 1878-3686. PMID 29136503.
  10. Ferrara, F.; et al. (2000). "CD56 expression is an indicator of poor clinical outcome in patients with acute promyelocytic leukemia treated with simultaneous all-trans-retinoic acid and chemotherapy". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 18 (6): 1295–1300. doi:10.1200/JCO.2000.18.6.1295. ISSN 0732-183X. PMID 10715300.
  11. Schnittger, Susanne; et al. (2011). "Clinical impact of FLT3 mutation load in acute promyelocytic leukemia with t(15;17)/PML-RARA". Haematologica. 96 (12): 1799–1807. doi:10.3324/haematol.2011.049007. ISSN 1592-8721. PMC 3232262. PMID 21859732.
  12. Pearson, M.; et al. (2000). "PML regulates p53 acetylation and premature senescence induced by oncogenic Ras". Nature. 406 (6792): 207–210. doi:10.1038/35018127. ISSN 0028-0836. PMID 10910364.
  13. Bernardi, Rosa; et al. (2007). "Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies". Nature Reviews. Molecular Cell Biology. 8 (12): 1006–1016. doi:10.1038/nrm2277. ISSN 1471-0080. PMID 17928811.
  14. Melnick, A.; et al. (1999). "Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia". Blood. 93 (10): 3167–3215. ISSN 0006-4971. PMID 10233871.
  15. de Thé, Hugues; et al. (2010). "Acute promyelocytic leukaemia: novel insights into the mechanisms of cure". Nature Reviews. Cancer. 10 (11): 775–783. doi:10.1038/nrc2943. ISSN 1474-1768. PMID 20966922.

Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage).  Additional global feedback or concerns are also welcome. *Citation of this Page: “Acute promyelocytic leukaemia with PML::RARA fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 09/6/2024, https://ccga.io/index.php/HAEM5:Acute_promyelocytic_leukaemia_with_PML::RARA_fusion.