Difference between revisions of "HAEM5:B-lymphoblastic leukaemia/lymphoma with BCR::ABL1 fusion"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[checked revision][checked revision]
Line 1: Line 1:
 
{{DISPLAYTITLE:B-lymphoblastic leukaemia/lymphoma with BCR::ABL1 fusion}}
 
{{DISPLAYTITLE:B-lymphoblastic leukaemia/lymphoma with BCR::ABL1 fusion}}
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (5th ed.)]]
+
[[HAEM5:Table_of_Contents|Haematolymphoid Tumours (WHO Classification, 5th ed.)]]
  
 
{{Under Construction}}
 
{{Under Construction}}
Line 7: Line 7:
 
}}</blockquote>
 
}}</blockquote>
  
<span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples). Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span>
+
<span style="color:#0070C0">(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use [https://www.genenames.org/ <u>HUGO-approved gene names and symbols</u>] (italicized when appropriate), [https://varnomen.hgvs.org/ HGVS-based nomenclature for variants], as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click nearby within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see </span><u>[[Author_Instructions]]</u><span style="color:#0070C0"> and [[Frequently Asked Questions (FAQs)|<u>FAQs</u>]] as well as contact your [[Leadership|<u>Associate Editor</u>]] or [mailto:CCGA@cancergenomics.org <u>Technical Support</u>])</span>
  
 
==Primary Author(s)*==
 
==Primary Author(s)*==
Line 38: Line 38:
 
==Clinical Features==
 
==Clinical Features==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table'') </span>
+
Put your text here and fill in the table <span style="color:#0070C0">(''Instruction: Can include references in the table. Do not delete table.'') </span>
 
{| class="wikitable"
 
{| class="wikitable"
 
|'''Signs and Symptoms'''
 
|'''Signs and Symptoms'''
|EXAMPLE Asymptomatic (incidental finding on complete blood counts)
+
|<span class="blue-text">EXAMPLE:</span> Asymptomatic (incidental finding on complete blood counts)
  
EXAMPLE B-symptoms (weight loss, fever, night sweats)
+
<span class="blue-text">EXAMPLE:</span> B-symptoms (weight loss, fever, night sweats)
  
EXAMPLE Fatigue
+
<span class="blue-text">EXAMPLE:</span> Fatigue
  
EXAMPLE Lymphadenopathy (uncommon)
+
<span class="blue-text">EXAMPLE:</span> Lymphadenopathy (uncommon)
 
|-
 
|-
 
|'''Laboratory Findings'''
 
|'''Laboratory Findings'''
|EXAMPLE Cytopenias
+
|<span class="blue-text">EXAMPLE:</span> Cytopenias
  
EXAMPLE Lymphocytosis (low level)
+
<span class="blue-text">EXAMPLE:</span> Lymphocytosis (low level)
 
|}
 
|}
  
  
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Features|The content below was from the old template. Please incorporate above.}}
+
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
  
 
The presenting features are generally similar to those seen in patients with other B-ALLs. Most children with B-ALL with ''BCR-ABL1'' are considered to have high risk on the basis of age and white blood cell count (WBC). Patients tend to have a high WBC count at presentation, and although they may have organ involvement, lymphomatous presentations are rare.  
 
The presenting features are generally similar to those seen in patients with other B-ALLs. Most children with B-ALL with ''BCR-ABL1'' are considered to have high risk on the basis of age and white blood cell count (WBC). Patients tend to have a high WBC count at presentation, and although they may have organ involvement, lymphomatous presentations are rare.  
Line 83: Line 83:
 
|Negative (universal)||KIT (CD117)
 
|Negative (universal)||KIT (CD117)
 
|-
 
|-
|Negative (subset)||EXAMPLE CD4
+
|Negative (subset)||<span class="blue-text">EXAMPLE:</span> CD4
 
|}
 
|}
  
Line 98: Line 98:
 
!Notes
 
!Notes
 
|-
 
|-
|EXAMPLE t(9;22)(q34;q11.2)||EXAMPLE 3'ABL1 / 5'BCR||EXAMPLE der(22)||EXAMPLE 20% (COSMIC)
+
|<span class="blue-text">EXAMPLE:</span> t(9;22)(q34;q11.2)||<span class="blue-text">EXAMPLE:</span> 3'ABL1 / 5'BCR||<span class="blue-text">EXAMPLE:</span> der(22)||<span class="blue-text">EXAMPLE:</span> 20% (COSMIC)
EXAMPLE 30% (add reference)
+
<span class="blue-text">EXAMPLE:</span> 30% (add reference)
 
|Yes
 
|Yes
 
|No
 
|No
 
|Yes
 
|Yes
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
 
The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).
Line 109: Line 109:
 
 
  
<blockquote class='blockedit'>{{Box-round|title=v4:Chromosomal Rearrangements (Gene Fusions)|The content below was from the old template. Please incorporate above.}}
+
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
  
 
Put your text here and/or fill in the table
 
Put your text here and/or fill in the table
Line 122: Line 122:
 
2-4 % in pediatric cases
 
2-4 % in pediatric cases
 
|-
 
|-
|EXAMPLE t(8;21)(q22;q22)||EXAMPLE 5'RUNX1 / 3'RUNXT1||EXAMPLE der(8)||EXAMPLE 5%
+
|<span class="blue-text">EXAMPLE:</span> t(8;21)(q22;q22)||<span class="blue-text">EXAMPLE:</span> 5'RUNX1 / 3'RUNXT1||<span class="blue-text">EXAMPLE:</span> der(8)||<span class="blue-text">EXAMPLE:</span> 5%
 
|}
 
|}
 
 
Line 128: Line 128:
  
  
<blockquote class='blockedit'>{{Box-round|title=v4:Clinical Significance (Diagnosis, Prognosis and Therapeutic Implications).|Please incorporate this section into the relevant tables found in:
+
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Please incorporate this section into the relevant tables found in:
 
* Chromosomal Rearrangements (Gene Fusions)
 
* Chromosomal Rearrangements (Gene Fusions)
 
* Individual Region Genomic Gain/Loss/LOH
 
* Individual Region Genomic Gain/Loss/LOH
Line 141: Line 141:
 
==Individual Region Genomic Gain / Loss / LOH==
 
==Individual Region Genomic Gain / Loss / LOH==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable.'') </span>
+
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.'') </span>
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 151: Line 151:
 
!Notes
 
!Notes
 
|-
 
|-
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
7
 
7
|EXAMPLE Loss
+
|<span class="blue-text">EXAMPLE:</span> Loss
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
chr7:1- 159,335,973 [hg38]
 
chr7:1- 159,335,973 [hg38]
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
chr7
 
chr7
Line 164: Line 164:
 
|Yes
 
|Yes
 
|No
 
|No
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
 
Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).
 
|-
 
|-
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
8
 
8
|EXAMPLE Gain
+
|<span class="blue-text">EXAMPLE:</span> Gain
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
chr8:1-145,138,636 [hg38]
 
chr8:1-145,138,636 [hg38]
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
chr8
 
chr8
Line 181: Line 181:
 
|No
 
|No
 
|No
 
|No
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
Common recurrent secondary finding for t(8;21) (add reference).
 
Common recurrent secondary finding for t(8;21) (add reference).
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=v4:Genomic Gain/Loss/LOH|The content below was from the old template. Please incorporate above.}}
+
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
  
 
The most common accompanying chromosomal abnormalities include monosomy 7 (including deletion of the IKZF1 gene) (18%), monosomy 9 or 9p deletion (9%), and gain of 1q (8%).  
 
The most common accompanying chromosomal abnormalities include monosomy 7 (including deletion of the IKZF1 gene) (18%), monosomy 9 or 9p deletion (9%), and gain of 1q (8%).  
Line 202: Line 202:
 
==Characteristic Chromosomal Patterns==
 
==Characteristic Chromosomal Patterns==
  
Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis'')</span>
+
Put your text here <span style="color:#0070C0">(''EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.'')</span>
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 212: Line 212:
 
!Notes
 
!Notes
 
|-
 
|-
|EXAMPLE
+
|<span class="blue-text">EXAMPLE:</span>
  
 
Co-deletion of 1p and 18q
 
Co-deletion of 1p and 18q
Line 218: Line 218:
 
|No
 
|No
 
|No
 
|No
|EXAMPLE:
+
|<span class="blue-text">EXAMPLE:</span>
  
 
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
 
See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=v4:Characteristic Chromosomal Aberrations / Patterns|The content below was from the old template. Please incorporate above.}}
+
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
  
 
The t(9;22) results in the production of a BCR-ABL1 fusion protein. The majority of pediatric and half of adult t(9;22) positive B-ALL involve the minor breakpoint cluster region (m-bcr) encoding a smaller p190 fusion protein in contrast to chronic myelogenous leukemia (CML), where it involves the major breakpoint cluster region (M-bcr). <ref>{{Cite journal|last=Woo|first=Jennifer S.|last2=Alberti|first2=Michael O.|last3=Tirado|first3=Carlos A.|date=2014|title=Childhood B-acute lymphoblastic leukemia: a genetic update|url=https://pubmed.ncbi.nlm.nih.gov/24949228|journal=Experimental Hematology & Oncology|volume=3|pages=16|doi=10.1186/2162-3619-3-16|issn=2162-3619|pmc=4063430|pmid=24949228}}</ref>
 
The t(9;22) results in the production of a BCR-ABL1 fusion protein. The majority of pediatric and half of adult t(9;22) positive B-ALL involve the minor breakpoint cluster region (m-bcr) encoding a smaller p190 fusion protein in contrast to chronic myelogenous leukemia (CML), where it involves the major breakpoint cluster region (M-bcr). <ref>{{Cite journal|last=Woo|first=Jennifer S.|last2=Alberti|first2=Michael O.|last3=Tirado|first3=Carlos A.|date=2014|title=Childhood B-acute lymphoblastic leukemia: a genetic update|url=https://pubmed.ncbi.nlm.nih.gov/24949228|journal=Experimental Hematology & Oncology|volume=3|pages=16|doi=10.1186/2162-3619-3-16|issn=2162-3619|pmc=4063430|pmid=24949228}}</ref>
Line 230: Line 230:
 
==Gene Mutations (SNV / INDEL)==
 
==Gene Mutations (SNV / INDEL)==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable; Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity.'') </span>
+
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.'') </span>
  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
Line 240: Line 240:
 
!Notes
 
!Notes
 
|-
 
|-
|EXAMPLE: TP53; Variable LOF mutations
+
|<span class="blue-text">EXAMPLE:</span> TP53; Variable LOF mutations
  
EXAMPLE:
+
<span class="blue-text">EXAMPLE:</span>
  
 
EGFR; Exon 20 mutations
 
EGFR; Exon 20 mutations
  
EXAMPLE: BRAF; Activating mutations
+
<span class="blue-text">EXAMPLE:</span> BRAF; Activating mutations
|EXAMPLE: TSG
+
|<span class="blue-text">EXAMPLE:</span> TSG
|EXAMPLE: 20% (COSMIC)
+
|<span class="blue-text">EXAMPLE:</span> 20% (COSMIC)
  
EXAMPLE: 30% (add Reference)
+
<span class="blue-text">EXAMPLE:</span> 30% (add Reference)
|EXAMPLE: IDH1 R123H
+
|<span class="blue-text">EXAMPLE:</span> IDH1 R123H
|EXAMPLE: EGFR amplification
+
|<span class="blue-text">EXAMPLE:</span> EGFR amplification
 
|
 
|
 
|
 
|
 
|
 
|
|EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).
+
|<span class="blue-text">EXAMPLE:</span>  Excludes hairy cell leukemia (HCL) (add reference).
 
<br />
 
<br />
 
|}
 
|}
Line 267: Line 267:
 
==Genes and Main Pathways Involved==
 
==Genes and Main Pathways Involved==
  
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table.'')</span>
+
Put your text here and fill in the table <span style="color:#0070C0">(''Instructions: Can include references in the table. Do not delete table.'')</span>
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
!Gene; Genetic Alteration!!Pathway!!Pathophysiologic Outcome
 
|-
 
|-
|EXAMPLE: BRAF and MAP2K1; Activating mutations
+
|<span class="blue-text">EXAMPLE:</span> BRAF and MAP2K1; Activating mutations
|EXAMPLE: MAPK signaling
+
|<span class="blue-text">EXAMPLE:</span> MAPK signaling
|EXAMPLE: Increased cell growth and proliferation
+
|<span class="blue-text">EXAMPLE:</span> Increased cell growth and proliferation
 
|-
 
|-
|EXAMPLE: CDKN2A; Inactivating mutations
+
|<span class="blue-text">EXAMPLE:</span> CDKN2A; Inactivating mutations
|EXAMPLE: Cell cycle regulation
+
|<span class="blue-text">EXAMPLE:</span> Cell cycle regulation
|EXAMPLE: Unregulated cell division
+
|<span class="blue-text">EXAMPLE:</span> Unregulated cell division
 
|-
 
|-
|EXAMPLE:  KMT2C and ARID1A; Inactivating mutations
+
|<span class="blue-text">EXAMPLE:</span>  KMT2C and ARID1A; Inactivating mutations
|EXAMPLE:  Histone modification, chromatin remodeling
+
|<span class="blue-text">EXAMPLE:</span>  Histone modification, chromatin remodeling
|EXAMPLE:  Abnormal gene expression program
+
|<span class="blue-text">EXAMPLE:</span>  Abnormal gene expression program
 
|}
 
|}
  
<blockquote class='blockedit'>{{Box-round|title=v4:Genes and Main Pathways Involved|The content below was from the old template. Please incorporate above.}}
+
<blockquote class='blockedit'>{{Box-round|title=HAEM5 Conversion Notes|Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification}}
  
 
''BCR'' and ''ABL1''
 
''BCR'' and ''ABL1''

Revision as of 11:31, 1 September 2024

Haematolymphoid Tumours (WHO Classification, 5th ed.)

editHAEM5 Conversion Notes
This page was converted to the new template on 2023-12-07. The original page can be found at HAEM4:B-Lymphoblastic Leukemia/Lymphoma with t(9;22)(q34.1;q11.2); BCR-ABL1.

(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click nearby within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)

Primary Author(s)*

Afia Hasnain, MBBS, PhD; Yassmine Akkari, PhD, FACMG

Cancer Category / Type

B-Lymphoblastic Leukemia/Lymphoma

Cancer Sub-Classification / Subtype

B-Lymphoblastic Leukemia/Lymphoma with t(9;22)(q34.1;q11.2); BCR-ABL1

Definition / Description of Disease

B-Lymphoblastic Leukemia/Lymphoma with t(9;22)(q34.1;q11.2) is a neoplasm of lymphoblasts committed to the B-cell lineage in which the blasts harbor a translocation between BCR at 22q11.2 and ABL1 oncogene at 9q34.1. The t(9;22) results in the production of a BCR-ABL1 fusion, also known as the Philadelphia chromosome (Ph+).  

Synonyms / Terminology

  • Philadelphia chromosome
  • Ph+

Epidemiology / Prevalence

  • most common genomic alteration in adult B-ALL (25–30%)
  • detected in only 2–4% of pediatric cases

Clinical Features

Put your text here and fill in the table (Instruction: Can include references in the table. Do not delete table.)

Signs and Symptoms EXAMPLE: Asymptomatic (incidental finding on complete blood counts)

EXAMPLE: B-symptoms (weight loss, fever, night sweats)

EXAMPLE: Fatigue

EXAMPLE: Lymphadenopathy (uncommon)

Laboratory Findings EXAMPLE: Cytopenias

EXAMPLE: Lymphocytosis (low level)


editHAEM5 Conversion Notes
Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification

The presenting features are generally similar to those seen in patients with other B-ALLs. Most children with B-ALL with BCR-ABL1 are considered to have high risk on the basis of age and white blood cell count (WBC). Patients tend to have a high WBC count at presentation, and although they may have organ involvement, lymphomatous presentations are rare.

Sites of Involvement

Bone marrow

Morphologic Features

Put your text here

Immunophenotype

Put your text here and/or fill in the table

Finding Marker
Positive (universal) CD10, CD19 and TdT
Positive (subset) CD13, CD33 and CD25 (in adults)
Negative (universal) KIT (CD117)
Negative (subset) EXAMPLE: CD4

Chromosomal Rearrangements (Gene Fusions)

Put your text here and fill in the table

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE: t(9;22)(q34;q11.2) EXAMPLE: 3'ABL1 / 5'BCR EXAMPLE: der(22) EXAMPLE: 20% (COSMIC)

EXAMPLE: 30% (add reference)

Yes No Yes EXAMPLE:

The t(9;22) is diagnostic of CML in the appropriate morphology and clinical context (add reference). This fusion is responsive to targeted therapy such as Imatinib (Gleevec) (add reference).


editHAEM5 Conversion Notes
Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification

Put your text here and/or fill in the table

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence
t(9;22)(q34.1;q11.2) 3'ABL1 / 5'BCR der(22)t(9;22) 25-30% in adults

2-4 % in pediatric cases

EXAMPLE: t(8;21)(q22;q22) EXAMPLE: 5'RUNX1 / 3'RUNXT1 EXAMPLE: der(8) EXAMPLE: 5%


editHAEM5 Conversion Notes
Please incorporate this section into the relevant tables found in:
  • Chromosomal Rearrangements (Gene Fusions)
  • Individual Region Genomic Gain/Loss/LOH
  • Characteristic Chromosomal Patterns
  • Gene Mutations (SNV/INDEL)

The pediatric and adult Ph + B-ALL has been associated with the worst prognosis of the major cytogenetic subtypes of B- ALL. However, therapy with tyrosine kinase inhibitors (TKIs) has had a significantly favorable effect on outcome. A major molecular response is defined as a ≥3-log reduction in BCR-ABL1 transcript compared with the standardized baseline.

The presence of IKZF1 deletion has been associated with poor outcome and high risk of re- lapse. [1]

Individual Region Genomic Gain / Loss / LOH

Put your text here and fill in the table (Instructions: Includes aberrations not involving gene fusions. Can include references in the table. Can refer to CGC workgroup tables as linked on the homepage if applicable. Do not delete table.)

Chr # Gain / Loss / Amp / LOH Minimal Region Genomic Coordinates [Genome Build] Minimal Region Cytoband Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE:

7

EXAMPLE: Loss EXAMPLE:

chr7:1- 159,335,973 [hg38]

EXAMPLE:

chr7

Yes Yes No EXAMPLE:

Presence of monosomy 7 (or 7q deletion) is sufficient for a diagnosis of AML with MDS-related changes when there is ≥20% blasts and no prior therapy (add reference).  Monosomy 7/7q deletion is associated with a poor prognosis in AML (add reference).

EXAMPLE:

8

EXAMPLE: Gain EXAMPLE:

chr8:1-145,138,636 [hg38]

EXAMPLE:

chr8

No No No EXAMPLE:

Common recurrent secondary finding for t(8;21) (add reference).

editHAEM5 Conversion Notes
Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification

The most common accompanying chromosomal abnormalities include monosomy 7 (including deletion of the IKZF1 gene) (18%), monosomy 9 or 9p deletion (9%), and gain of 1q (8%).

Chromosome Number Gain/Loss/Amp/LOH Region
7 Loss chr7:1-159,345,973
9 Loss chr9:1-138,394,717

Characteristic Chromosomal Patterns

Put your text here (EXAMPLE PATTERNS: hyperdiploid; gain of odd number chromosomes including typically chromosome 1, 3, 5, 7, 11, and 17; co-deletion of 1p and 19q; complex karyotypes without characteristic genetic findings; chromothripsis. Do not delete table.)

Chromosomal Pattern Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE:

Co-deletion of 1p and 18q

Yes No No EXAMPLE:

See chromosomal rearrangements table as this pattern is due to an unbalanced derivative translocation associated with oligodendroglioma (add reference).

editHAEM5 Conversion Notes
Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification

The t(9;22) results in the production of a BCR-ABL1 fusion protein. The majority of pediatric and half of adult t(9;22) positive B-ALL involve the minor breakpoint cluster region (m-bcr) encoding a smaller p190 fusion protein in contrast to chronic myelogenous leukemia (CML), where it involves the major breakpoint cluster region (M-bcr). [2]

Gene Mutations (SNV / INDEL)

Put your text here and fill in the table (Instructions: This table is not meant to be an exhaustive list; please include only genes/alterations that are recurrent and common as well as either disease defining and/or clinically significant. Can include references in the table. For clinical significance, denote associations with FDA-approved therapy (not an extensive list of applicable drugs) and NCCN or other national guidelines if applicable. Can also refer to CGC workgroup tables as linked on the homepage if applicable as well as any high impact papers or reviews of gene mutations in this entity. Do not delete table.)

Gene; Genetic Alteration Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) Prevalence (COSMIC / TCGA / Other) Concomitant Mutations Mutually Exclusive Mutations Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
EXAMPLE: TP53; Variable LOF mutations

EXAMPLE:

EGFR; Exon 20 mutations

EXAMPLE: BRAF; Activating mutations

EXAMPLE: TSG EXAMPLE: 20% (COSMIC)

EXAMPLE: 30% (add Reference)

EXAMPLE: IDH1 R123H EXAMPLE: EGFR amplification EXAMPLE:  Excludes hairy cell leukemia (HCL) (add reference).


Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Put your text here

Genes and Main Pathways Involved

Put your text here and fill in the table (Instructions: Can include references in the table. Do not delete table.)

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
EXAMPLE: BRAF and MAP2K1; Activating mutations EXAMPLE: MAPK signaling EXAMPLE: Increased cell growth and proliferation
EXAMPLE: CDKN2A; Inactivating mutations EXAMPLE: Cell cycle regulation EXAMPLE: Unregulated cell division
EXAMPLE:  KMT2C and ARID1A; Inactivating mutations EXAMPLE:  Histone modification, chromatin remodeling EXAMPLE:  Abnormal gene expression program
editHAEM5 Conversion Notes
Content Update To WHO 5th Edition Classification Is In Process; Content Below is Based on WHO 4th Edition Classification

BCR and ABL1

Genetic Diagnostic Testing Methods

  • Clinical testing for the BCR-ABL1 fusion includes conventional chromosome studies, dual color, dual fusion FISH analysis and RT- PCR.
  • FISH results can be available within 24 h and should be considered as the first line test.
  • Quantitative RT-PCR can detect specific transcripts at a higher sensitivity, and important at follow up to determine disease status and degree of response.
  • Conventional cytogenetics can also detect variant translocations, additional Philadelphia chromosome resulting in gain of 9q and 22q as well as trisomy 8, and a hyperdiploid karyotype.
  • CMA cannot detect balanced rearrangements such as t(9;22) but it can detect additional copy number abnormalities.
  • An average of 7.8 lesions per case were observed by using CMA in adults with Ph + B-ALL.[3]

Familial Forms

Put your text here (Instructions: Include associated hereditary conditions/syndromes that cause this entity or are caused by this entity.)

Additional Information

Put your text here

Links

ABL1

BCR

Put your links here (use "Link" icon at top of page)

References

(use the "Cite" icon at the top of the page) (Instructions: Add each reference into the text above by clicking on where you want to insert the reference, selecting the “Cite” icon at the top of the page, and using the “Automatic” tab option to search such as by PMID to select the reference to insert. The reference list in this section will be automatically generated and sorted. If a PMID is not available, such as for a book, please use the “Cite” icon, select “Manual” and then “Basic Form”, and include the entire reference.)

  1. van der Veer, Arian; et al. (2014-03-13). "IKZF1 status as a prognostic feature in BCR-ABL1-positive childhood ALL". Blood. 123 (11): 1691–1698. doi:10.1182/blood-2013-06-509794. ISSN 1528-0020. PMID 24366361.
  2. Woo, Jennifer S.; et al. (2014). "Childhood B-acute lymphoblastic leukemia: a genetic update". Experimental Hematology & Oncology. 3: 16. doi:10.1186/2162-3619-3-16. ISSN 2162-3619. PMC 4063430. PMID 24949228.
  3. Fedullo, Anna Lucia; et al. (02 2019). "Prognostic implications of additional genomic lesions in adult Philadelphia chromosome-positive acute lymphoblastic leukemia". Haematologica. 104 (2): 312–318. doi:10.3324/haematol.2018.196055. ISSN 1592-8721. PMC 6355475. PMID 30190342. Check date values in: |date= (help)

Notes

*Primary authors will typically be those that initially create and complete the content of a page.  If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage).  Additional global feedback or concerns are also welcome. *Citation of this Page: “B-lymphoblastic leukaemia/lymphoma with BCR::ABL1 fusion”. Compendium of Cancer Genome Aberrations (CCGA), Cancer Genomics Consortium (CGC), updated 09/1/2024, https://ccga.io/index.php/HAEM5:B-lymphoblastic_leukaemia/lymphoma_with_BCR::ABL1_fusion.