Difference between revisions of "HAEM5:T-prolymphocytic leukaemia"

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search
[unchecked revision][unchecked revision]
 
Line 30: Line 30:
 
|}
 
|}
 
==Definition / Description of Disease==
 
==Definition / Description of Disease==
T-prolymphocytic leukemia (T-PLL) is an aggressive form of T-cell leukemia marked by the proliferation of small to medium-sized prolymphocytes exhibiting a mature post-thymic T-cell phenotype. This condition is characterized by the juxtaposition of TCL1A or MTCP1 genes to a TR locus, typically the TRA/TRD locus.<ref name=":5">Elenitoba-Johnson K, et al. T-prolymphocytic leukemia. In: WHO Classification of Tumours Editorial Board. Haematolymphoid tumours [Internet]. Lyon (France): International Agency for Research on Cancer; 2024 [cited 2024 June 12]. (WHO classification of tumors series, 5th ed.; vol. 11). Available from: https://tumourclassification.iarc.who.int/chaptercontent/63/209</ref>  
+
T-prolymphocytic leukemia (T-PLL) is an aggressive form of T-cell leukemia marked by the proliferation of small to medium-sized prolymphocytes exhibiting a mature post-thymic T-cell phenotype.<ref name=":5">Elenitoba-Johnson K, et al. T-prolymphocytic leukemia. In: WHO Classification of Tumours Editorial Board. Haematolymphoid tumours [Internet]. Lyon (France): International Agency for Research on Cancer; 2024 [cited 2024 June 12]. (WHO classification of tumors series, 5th ed.; vol. 11). Available from: https://tumourclassification.iarc.who.int/chaptercontent/63/209</ref>  
 
==Synonyms / Terminology==
 
==Synonyms / Terminology==
 
T-cell chronic lymphocytic leukemia
 
T-cell chronic lymphocytic leukemia
Line 47: Line 47:
  
 
Malignant effusions (15%)
 
Malignant effusions (15%)
 
Asymptomatic and indolent phase (30% of cases)
 
 
|-
 
|-
 
|'''Laboratory Findings'''
 
|'''Laboratory Findings'''
Line 65: Line 63:
 
Peripheral blood, bone marrow, spleen (mostly red pulp), liver, lymph node (mostly paracortical), and sometimes skin and serosa (primarily pleura). Extra lymphatic and extramedullary atypical manifestations including skin, muscles and intestines are particularly common in relapse.<ref name=":5" />
 
Peripheral blood, bone marrow, spleen (mostly red pulp), liver, lymph node (mostly paracortical), and sometimes skin and serosa (primarily pleura). Extra lymphatic and extramedullary atypical manifestations including skin, muscles and intestines are particularly common in relapse.<ref name=":5" />
 
==Morphologic Features==
 
==Morphologic Features==
Blood smears in T-PLL typically reveal anemia, thrombocytopenia, and leukocytosis, with atypical lymphocytes in three morphological forms. The most common form (75% of cases) features medium-sized cells with a high nuclear-to-cytoplasmic ratio, moderately condensed chromatin, a single visible nucleolus, and slightly basophilic cytoplasm. In 20% of cases, the cells appear as a small cell variant with densely condensed chromatin and an inconspicuous nucleolus. About 5% of cases exhibit a cerebriform variant with irregular nuclei resembling those in mycosis fungoides. Regardless of the nuclear features, a common morphological characteristic is the presence of cytoplasmic protrusions or blebs.<ref>{{Cite journal|last=Gutierrez|first=Marc|last2=Bladek|first2=Patrick|last3=Goksu|first3=Busra|last4=Murga-Zamalloa|first4=Carlos|last5=Bixby|first5=Dale|last6=Wilcox|first6=Ryan|date=2023-07-28|title=T-Cell Prolymphocytic Leukemia: Diagnosis, Pathogenesis, and Treatment|url=https://pubmed.ncbi.nlm.nih.gov/37569479|journal=International Journal of Molecular Sciences|volume=24|issue=15|pages=12106|doi=10.3390/ijms241512106|issn=1422-0067|pmc=PMC10419310|pmid=37569479}}</ref>Bone marrow aspirates show clusters of these neoplastic cells, with a mixed pattern of involvement including diffuse and interstitial, in trephine core biopsy.<ref name=":6" />
+
Blood smears in T-PLL typically reveal anemia, thrombocytopenia, and leukocytosis, with atypical lymphocytes in three morphological forms: The most common form (75% of cases) features medium-sized cells with a high nuclear-to-cytoplasmic ratio, moderately condensed chromatin, a single visible nucleolus, and slightly basophilic cytoplasm. In 20% of cases, the cells appear as a small cell variant with densely condensed chromatin and an inconspicuous nucleolus. About 5% of cases exhibit a cerebriform variant with irregular nuclei resembling those in mycosis fungoides. Regardless of the nuclear features, a common morphological characteristic is the presence of cytoplasmic protrusions or blebs.<ref>{{Cite journal|last=Gutierrez|first=Marc|last2=Bladek|first2=Patrick|last3=Goksu|first3=Busra|last4=Murga-Zamalloa|first4=Carlos|last5=Bixby|first5=Dale|last6=Wilcox|first6=Ryan|date=2023-07-28|title=T-Cell Prolymphocytic Leukemia: Diagnosis, Pathogenesis, and Treatment|url=https://pubmed.ncbi.nlm.nih.gov/37569479|journal=International Journal of Molecular Sciences|volume=24|issue=15|pages=12106|doi=10.3390/ijms241512106|issn=1422-0067|pmc=PMC10419310|pmid=37569479}}</ref>Bone marrow aspirates show clusters of these neoplastic cells, with a mixed pattern of involvement including diffuse and interstitial, in trephine core biopsy.<ref name=":6" />
 
==Immunophenotype==
 
==Immunophenotype==
T-cell prolymphocytes show strong staining with alpha-naphthyl acetate esterase and acid phosphatase, presenting a distinctive dot-like pattern, but cytochemistry is not commonly used for diagnosis.<ref>{{Cite journal|last=Yang|first=K.|last2=Bearman|first2=R. M.|last3=Pangalis|first3=G. A.|last4=Zelman|first4=R. J.|last5=Rappaport|first5=H.|date=1982-08|title=Acid phosphatase and alpha-naphthyl acetate esterase in neoplastic and non-neoplastic lymphocytes. A statistical analysis|url=https://pubmed.ncbi.nlm.nih.gov/6179423|journal=American Journal of Clinical Pathology|volume=78|issue=2|pages=141–149|doi=10.1093/ajcp/78.2.141|issn=0002-9173|pmid=6179423}}</ref> T-cell prolymphocytes exhibit a post-thymic T-cell phenotype. In 60% of cases, the cells are CD4+ and CD8-. In 25% of cases, they co-express both CD4 and CD8, while the remaining 15% are CD4- and CD8+.<ref name=":7">Matutes E, et al., (2017). T-cell prolymphocytic leukemia, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p346-347.</ref>  
+
'''Cytochemistry:''' T-cell prolymphocytes show strong staining with alpha-naphthyl acetate esterase and acid phosphatase, presenting a distinctive dot-like pattern, but cytochemistry is not commonly used for diagnosis.<ref>{{Cite journal|last=Yang|first=K.|last2=Bearman|first2=R. M.|last3=Pangalis|first3=G. A.|last4=Zelman|first4=R. J.|last5=Rappaport|first5=H.|date=1982-08|title=Acid phosphatase and alpha-naphthyl acetate esterase in neoplastic and non-neoplastic lymphocytes. A statistical analysis|url=https://pubmed.ncbi.nlm.nih.gov/6179423|journal=American Journal of Clinical Pathology|volume=78|issue=2|pages=141–149|doi=10.1093/ajcp/78.2.141|issn=0002-9173|pmid=6179423}}</ref>  
 +
 
 +
'''Immunophenotype:''' T-cell prolymphocytes exhibit a post-thymic T-cell phenotype. In 60% of cases, the cells are CD4+ and CD8-. In 25% of cases, they co-express both CD4 and CD8, while the remaining 15% are CD4- and CD8+.<ref name=":7">Matutes E, et al., (2017). T-cell prolymphocytic leukemia, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p346-347.</ref>  
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 81: Line 81:
 
|}
 
|}
 
==Chromosomal Rearrangements (Gene Fusions)==
 
==Chromosomal Rearrangements (Gene Fusions)==
Rearrangements involving the TCL1 (T-cell leukemia/lymphoma 1) family genes—''TCL1A, MTCP1'' (mature T-cell proliferation), or ''TCL1B'' (also known as ''TCL1/MTCP''1-like 1 [''TML''1])—are highly specific to T-PLL and occur in more than 90% of cases. These translocations juxtapose the TRA locus with the oncogenes ''TCL1A'' or ''TCL1B'', or in the case of t(X;14), with the ''MTCP1'' gene.<ref name=":6" /><ref name=":7" />
+
Rearrangements involving the TCL1 (T-cell leukemia/lymphoma 1) family genes—''TCL1A, MTCP1'' (mature T-cell proliferation), or ''TCL1B'' (also known as ''TCL1/MTCP''1-like 1 [''TML''1])—are highly specific to T-PLL and occur in more than 90% of cases. These translocations juxtapose the ''TRA'' locus with the oncogenes ''TCL1A'' or ''TCL1B'', or in the case of t(X;14), with the ''MTCP1'' gene.<ref name=":6" /><ref name=":7" />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 97: Line 97:
 
|Yes
 
|Yes
 
|Yes
 
|Yes
|These genetic abnormalities serve as diagnostic markers and generally indicate an aggressive disease. This is due to their role in overexpressing oncogenes like ''TCL1A''. Major diagnostic criteria.<ref name=":6" />
+
|These genetic abnormalities serve as diagnostic markers and generally indicate an aggressive disease. This is due to their role in overexpressing oncogenes like ''TCL1A''. '''Major diagnostic criteria'''.<ref name=":6" />
 
|-
 
|-
 
|t(X;14)(q28;q11.2)
 
|t(X;14)(q28;q11.2)
Line 106: Line 106:
 
|No
 
|No
 
|Yes
 
|Yes
|Major diagnostic criteria.<ref name=":6" />
+
|'''Major diagnostic criteria'''.<ref name=":6" />
 
|}
 
|}
 
==Individual Region Genomic Gain / Loss / LOH==
 
==Individual Region Genomic Gain / Loss / LOH==
Line 135: Line 135:
 
|No
 
|No
 
|No
 
|No
|Recurrent secondary finding (70-80% of cases). Minor diagnostic criteria.<ref name=":6">{{Cite journal|last=Staber|first=Philipp B.|last2=Herling|first2=Marco|last3=Bellido|first3=Mar|last4=Jacobsen|first4=Eric D.|last5=Davids|first5=Matthew S.|last6=Kadia|first6=Tapan Mahendra|last7=Shustov|first7=Andrei|last8=Tournilhac|first8=Olivier|last9=Bachy|first9=Emmanuel|date=2019-10-03|title=Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/31292114|journal=Blood|volume=134|issue=14|pages=1132–1143|doi=10.1182/blood.2019000402|issn=1528-0020|pmc=7042666|pmid=31292114}}</ref>
+
|Recurrent secondary finding (70-80% of cases). '''Minor diagnostic criteria'''.<ref name=":6">{{Cite journal|last=Staber|first=Philipp B.|last2=Herling|first2=Marco|last3=Bellido|first3=Mar|last4=Jacobsen|first4=Eric D.|last5=Davids|first5=Matthew S.|last6=Kadia|first6=Tapan Mahendra|last7=Shustov|first7=Andrei|last8=Tournilhac|first8=Olivier|last9=Bachy|first9=Emmanuel|date=2019-10-03|title=Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/31292114|journal=Blood|volume=134|issue=14|pages=1132–1143|doi=10.1182/blood.2019000402|issn=1528-0020|pmc=7042666|pmid=31292114}}</ref>
 
|-
 
|-
 
|5
 
|5
Line 144: Line 144:
 
|Yes
 
|Yes
 
|No
 
|No
|Minor diagnostic criteria.<ref name=":6" />
+
|'''Minor diagnostic criteria'''.<ref name=":6" />
 
|-
 
|-
 
|6
 
|6
Line 162: Line 162:
 
|Yes
 
|Yes
 
|Yes
 
|Yes
|Frequent, Minor diagnostic criteria.<ref name=":6" />
+
|Frequent, '''Minor diagnostic criteria'''.<ref name=":6" />
 
|-
 
|-
 
|12
 
|12
Line 172: Line 172:
 
|No
 
|No
 
|Haploinsufficiency of the CDKN1B gene at the 12p13 locus contributes to the development of T-PLL.<ref>{{Cite journal|last=Le Toriellec|first=Emilie|last2=Despouy|first2=Gilles|last3=Pierron|first3=Gaëlle|last4=Gaye|first4=Nogaye|last5=Joiner|first5=Marjorie|last6=Bellanger|first6=Dorine|last7=Vincent-Salomon|first7=Anne|last8=Stern|first8=Marc-Henri|date=2008-02-15|title=Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/18073348|journal=Blood|volume=111|issue=4|pages=2321–2328|doi=10.1182/blood-2007-06-095570|issn=0006-4971|pmid=18073348}}</ref>
 
|Haploinsufficiency of the CDKN1B gene at the 12p13 locus contributes to the development of T-PLL.<ref>{{Cite journal|last=Le Toriellec|first=Emilie|last2=Despouy|first2=Gilles|last3=Pierron|first3=Gaëlle|last4=Gaye|first4=Nogaye|last5=Joiner|first5=Marjorie|last6=Bellanger|first6=Dorine|last7=Vincent-Salomon|first7=Anne|last8=Stern|first8=Marc-Henri|date=2008-02-15|title=Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/18073348|journal=Blood|volume=111|issue=4|pages=2321–2328|doi=10.1182/blood-2007-06-095570|issn=0006-4971|pmid=18073348}}</ref>
Minor diagnostic criteria.<ref name=":6" />
+
'''Minor diagnostic criteria'''.<ref name=":6" />
 
|-
 
|-
 
|13
 
|13
Line 181: Line 181:
 
|No
 
|No
 
|No
 
|No
|Minor diagnostic criteria.<ref name=":6" />
+
|'''Minor diagnostic criteria'''.<ref name=":6" />
 
|-
 
|-
 
|17
 
|17
Line 204: Line 204:
 
|No
 
|No
 
|Leading to the dysregulation of genes such as BCL11B, which is crucial in T-cell development and function.<ref name=":0" />
 
|Leading to the dysregulation of genes such as BCL11B, which is crucial in T-cell development and function.<ref name=":0" />
Minor diagnostic criteria.<ref name=":6" />
+
'''Minor diagnostic criteria'''.<ref name=":6" />
 
|}
 
|}
==Diagnosis and Characteristic Chromosomal Patterns==
+
==Diagnostic criteria==
[[File:Inv(14)(q11.2q32).png|thumb|Inv(14)(q11.2q32)]]Diagnosis requires either all three major criteria or the first two major criteria along with one minor criterion:<ref name=":5" />
+
Diagnosis requires either all three major criteria or the first two major criteria along with one minor criterion:<ref name=":5" />
  
 
*'''Major criteria:'''
 
*'''Major criteria:'''
Line 219: Line 219:
 
**Involvement of specific sites (spleen, effusions)
 
**Involvement of specific sites (spleen, effusions)
  
 +
== Characteristic Chromosomal Patterns ==
 +
[[File:Inv(14)(q11.2q32).png|thumb|Inv(14)(q11.2q32)]]
 +
The most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1).<ref name=":5" /> <ref name=":7" />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 232: Line 235:
 
|Yes
 
|Yes
 
|Yes
 
|Yes
|he most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1)
+
|The most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1)
 
|}
 
|}
 
==Gene Mutations (SNV / INDEL)==
 
==Gene Mutations (SNV / INDEL)==
Although gene mutations beyond TCL1 family alterations are not yet recognized as diagnostic criteria and remain under investigation for T-PLL, the mutational landscape of T-PLL provides valuable insights. These discoveries open up potential avenues for novel targeted therapies in treating this aggressive form of leukemia. AS deletions and mutations of the ATM gene, present in up to 90% of T-PLL cases but typically absent in other mature T-cell malignancies, are considered highly indicative in diagnosing suspected TCL1 family-negative T-PLL. <ref name=":8">{{Cite journal|last=Schrader|first=A.|last2=Crispatzu|first2=G.|last3=Oberbeck|first3=S.|last4=Mayer|first4=P.|last5=Pützer|first5=S.|last6=von Jan|first6=J.|last7=Vasyutina|first7=E.|last8=Warner|first8=K.|last9=Weit|first9=N.|date=2018-02-15|title=Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL|url=https://pubmed.ncbi.nlm.nih.gov/29449575|journal=Nature Communications|volume=9|issue=1|pages=697|doi=10.1038/s41467-017-02688-6|issn=2041-1723|pmc=5814445|pmid=29449575}}</ref><ref name=":3" />
+
Although gene mutations beyond TCL1 family alterations are not yet recognized as diagnostic criteria and remain under investigation for T-PLL, the mutational landscape of T-PLL provides valuable insights. These discoveries open up potential avenues for novel targeted therapies in treating this aggressive form of leukemia. As deletions and mutations of the ATM gene, present in up to 90% of T-PLL cases but typically absent in other mature T-cell malignancies, they are considered highly indicative in diagnosing suspected TCL1 family-negative T-PLL. <ref name=":8">{{Cite journal|last=Schrader|first=A.|last2=Crispatzu|first2=G.|last3=Oberbeck|first3=S.|last4=Mayer|first4=P.|last5=Pützer|first5=S.|last6=von Jan|first6=J.|last7=Vasyutina|first7=E.|last8=Warner|first8=K.|last9=Weit|first9=N.|date=2018-02-15|title=Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL|url=https://pubmed.ncbi.nlm.nih.gov/29449575|journal=Nature Communications|volume=9|issue=1|pages=697|doi=10.1038/s41467-017-02688-6|issn=2041-1723|pmc=5814445|pmid=29449575}}</ref><ref name=":3" />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 252: Line 255:
 
|Yes
 
|Yes
 
|Yes (PARP inhibitors, NCT03263637)
 
|Yes (PARP inhibitors, NCT03263637)
|Deletions of or missense mutations at the ''ATM'' locus are found in up to 80% to 90% of T-PLL cases.<ref name=":8" /> ATM alterations can serve as a minor diagnostic criterion.<ref name=":6" />
+
|Since deletions of or missense mutations at the ''ATM'' locus are found in up to 80% to 90% of T-PLL cases, ''ATM'' alterations can serve as a minor diagnostic criterion.<ref name=":6" /><ref name=":8" />
 
|-
 
|-
 
|''FBXW10''
 
|''FBXW10''
Line 337: Line 340:
 
Research indicates that epigenetic modifications in the regulatory regions of key oncogenes and genes involved in DNA damage response and T-cell receptor regulation are clearly present. These changes are closely associated with the transcriptional dysregulation that forms the core lesions of T-PLL.<ref>{{Cite journal|last=Tian|first=Shulan|last2=Zhang|first2=Henan|last3=Zhang|first3=Pan|last4=Kalmbach|first4=Michael|last5=Lee|first5=Jeong-Heon|last6=Ordog|first6=Tamas|last7=Hampel|first7=Paul J.|last8=Call|first8=Timothy G.|last9=Witzig|first9=Thomas E.|date=2021-04-15|title=Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/33859327|journal=Scientific Reports|volume=11|issue=1|pages=8318|doi=10.1038/s41598-021-87890-9|issn=2045-2322|pmc=8050249|pmid=33859327}}</ref>
 
Research indicates that epigenetic modifications in the regulatory regions of key oncogenes and genes involved in DNA damage response and T-cell receptor regulation are clearly present. These changes are closely associated with the transcriptional dysregulation that forms the core lesions of T-PLL.<ref>{{Cite journal|last=Tian|first=Shulan|last2=Zhang|first2=Henan|last3=Zhang|first3=Pan|last4=Kalmbach|first4=Michael|last5=Lee|first5=Jeong-Heon|last6=Ordog|first6=Tamas|last7=Hampel|first7=Paul J.|last8=Call|first8=Timothy G.|last9=Witzig|first9=Thomas E.|date=2021-04-15|title=Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia|url=https://pubmed.ncbi.nlm.nih.gov/33859327|journal=Scientific Reports|volume=11|issue=1|pages=8318|doi=10.1038/s41598-021-87890-9|issn=2045-2322|pmc=8050249|pmid=33859327}}</ref>
 
==Genes and Main Pathways Involved==
 
==Genes and Main Pathways Involved==
The genetic landscape of T-PLL highlights the deregulation of DNA repair mechanisms and epigenetic modulators, alongside the frequent mutational activation of the IL2RG-JAK1-JAK3-STAT5B pathway in the pathogenesis of T-PLL.<ref name=":6" />
+
The key pathways involved in the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) include DNA damage repair, T-cell receptor (''TCR'') signaling, and epigenetic modulation. Additionally, there is frequent mutational activation of the ''IL2RG-JAK1-JAK3-STAT5B'' pathway, which plays a significant role in the disease's development and progression.<ref name=":6" />
 
{| class="wikitable sortable"
 
{| class="wikitable sortable"
 
|-
 
|-
Line 367: Line 370:
 
|}
 
|}
 
==Genetic Diagnostic Testing Methods==
 
==Genetic Diagnostic Testing Methods==
Cytogenetics (FISH, CpG-stimulated Karyotype, SNP microarray), PCR for TRB/TRG and Next-Generation Sequencing (NGS). The genetic diagnostic process involves detecting clonal rearrangements of the TR gene and rearrangements of the TCL1 gene at the TRB or TRG loci.
+
Cytogenetics (FISH, CpG-stimulated Karyotype, SNP microarray), PCR for TRB/TRG and Next-Generation Sequencing (NGS). The genetic diagnostic process involves detecting clonal rearrangements of the TR gene and rearrangements of the ''TCL1'' gene at the ''TRB'' or ''TRG'' loci.
 
==Familial Forms==
 
==Familial Forms==
There is no noticeable familial clustering. However, a subset of cases may develop in the context of ataxia-telangiectasia (AT), which is characterized by germline mutations in the ATM gene. Here there is a combined heterozygosity in the form of biallelic inactivating mutations of the ''ATM'' tumor suppressor gene.<ref>{{Cite journal|last=Suarez|first=Felipe|last2=Mahlaoui|first2=Nizar|last3=Canioni|first3=Danielle|last4=Andriamanga|first4=Chantal|last5=Dubois d'Enghien|first5=Catherine|last6=Brousse|first6=Nicole|last7=Jais|first7=Jean-Philippe|last8=Fischer|first8=Alain|last9=Hermine|first9=Olivier|date=2015-01-10|title=Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies|url=https://pubmed.ncbi.nlm.nih.gov/25488969|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=33|issue=2|pages=202–208|doi=10.1200/JCO.2014.56.5101|issn=1527-7755|pmid=25488969}}</ref> Penetrance of the tumor phenotype is about 10% to 15% by early adulthood.<ref>{{Cite journal|last=Taylor|first=A. M.|last2=Metcalfe|first2=J. A.|last3=Thick|first3=J.|last4=Mak|first4=Y. F.|date=1996-01-15|title=Leukemia and lymphoma in ataxia telangiectasia|url=https://pubmed.ncbi.nlm.nih.gov/8555463|journal=Blood|volume=87|issue=2|pages=423–438|issn=0006-4971|pmid=8555463}}</ref> It represents nearly 3% of all malignancies in patients with ataxia-telangiectasia.<ref>{{Cite journal|last=Li|first=Geling|last2=Waite|first2=Emily|last3=Wolfson|first3=Julie|date=2017-12-26|title=T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib)|url=https://pubmed.ncbi.nlm.nih.gov/29296924|journal=Blood Advances|volume=1|issue=27|pages=2724–2728|doi=10.1182/bloodadvances.2017010470|issn=2473-9529|pmc=5745136|pmid=29296924}}</ref>
+
While there is no noticeable familial clustering of T-cell prolymphocytic leukemia (T-PLL), a subset of cases can develop in the context of ataxia-telangiectasia (AT). AT is characterized by germline mutations in the ATM gene, and patients with AT are at an increased risk for various malignancies, including T-PLL. In these cases, biallelic inactivation of the ATM tumor suppressor gene occurs, with about 10% to 15% penetrance of the tumor phenotype by early adulthood. T-PLL represents nearly 3% of all malignancies in patients with ataxia-telangiectasia​. <ref>{{Cite journal|last=Suarez|first=Felipe|last2=Mahlaoui|first2=Nizar|last3=Canioni|first3=Danielle|last4=Andriamanga|first4=Chantal|last5=Dubois d'Enghien|first5=Catherine|last6=Brousse|first6=Nicole|last7=Jais|first7=Jean-Philippe|last8=Fischer|first8=Alain|last9=Hermine|first9=Olivier|date=2015-01-10|title=Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies|url=https://pubmed.ncbi.nlm.nih.gov/25488969|journal=Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology|volume=33|issue=2|pages=202–208|doi=10.1200/JCO.2014.56.5101|issn=1527-7755|pmid=25488969}}</ref> <ref>{{Cite journal|last=Taylor|first=A. M.|last2=Metcalfe|first2=J. A.|last3=Thick|first3=J.|last4=Mak|first4=Y. F.|date=1996-01-15|title=Leukemia and lymphoma in ataxia telangiectasia|url=https://pubmed.ncbi.nlm.nih.gov/8555463|journal=Blood|volume=87|issue=2|pages=423–438|issn=0006-4971|pmid=8555463}}</ref> <ref>{{Cite journal|last=Li|first=Geling|last2=Waite|first2=Emily|last3=Wolfson|first3=Julie|date=2017-12-26|title=T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib)|url=https://pubmed.ncbi.nlm.nih.gov/29296924|journal=Blood Advances|volume=1|issue=27|pages=2724–2728|doi=10.1182/bloodadvances.2017010470|issn=2473-9529|pmc=5745136|pmid=29296924}}</ref>
 
==Additional Information==
 
==Additional Information==
In T-PLL, the rapid growth of the disease necessitates immediate initiation of treatment. The most effective first-line treatment is alemtuzumab, an anti-CD52 antibody with remission rates over 80%. However, these remissions usually last only 1-2 years. To potentially extend remission, eligible patients are advised to undergo allogeneic blood stem cell transplantation (allo-SCT) during their first complete remission, which can lead to longer remission durations of over 4-5 years for 15-30% of patients. Consequently, the prognosis for T-PLL remains poor, with median overall survival times under two years and five-year survival rates below 5%[https://clinicaltrials.gov/study/NCT03989466 . Ongoing research is exploring molecularly targeted drugs and signaling pathway inhibitors, for routine clinical use in treating T-PLL.]
+
In T-PLL, the rapid growth of the disease necessitates immediate initiation of treatment. The most effective first-line treatment is alemtuzumab, an anti-CD52 antibody with remission rates over 80%. However, these remissions usually last only 1-2 years. To potentially extend remission, eligible patients are advised to undergo allogeneic blood stem cell transplantation (allo-SCT) during their first complete remission, which can lead to longer remission durations of over 4-5 years for 15-30% of patients. Consequently, the prognosis for T-PLL remains poor, with median overall survival times under two years and five-year survival rates below 5%[https://clinicaltrials.gov/study/NCT03989466 . Ongoing studies are exploring molecularly targeted drugs and signaling pathway inhibitors, for routine clinical use in treating T-PLL.]
 
==Links==
 
==Links==
 
(use the "Link" icon that looks like two overlapping circles at the top of the page) <span style="color:#0070C0">(''Instructions: Highlight text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "<nowiki>http://www</nowiki>." portion.'')</span>
 
(use the "Link" icon that looks like two overlapping circles at the top of the page) <span style="color:#0070C0">(''Instructions: Highlight text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "<nowiki>http://www</nowiki>." portion.'')</span>

Latest revision as of 19:07, 12 June 2024


Haematolymphoid Tumours (5th ed.)

(General Instructions – The main focus of these pages is the clinically significant genetic alterations in each disease type. Use HUGO-approved gene names and symbols (italicized when appropriate), HGVS-based nomenclature for variants, as well as generic names of drugs and testing platforms or assays if applicable. Please complete tables whenever possible and do not delete them (add N/A if not applicable in the table and delete the examples); to add (or move) a row or column to a table, click nearby within the table and select the > symbol that appears to be given options. Please do not delete or alter the section headings. The use of bullet points alongside short blocks of text rather than only large paragraphs is encouraged. Additional instructions below in italicized blue text should not be included in the final page content. Please also see Author_Instructions and FAQs as well as contact your Associate Editor or Technical Support)

Primary Author(s)*

Parastou Tizro, MD, Celeste C. Eno, PHD, Sumire Kitahara, MD

WHO Classification of Disease

(Will be autogenerated; Book will include name of specific book and have a link to the online WHO site)

Structure Disease
Book
Category
Family
Type
Subtype(s)

Definition / Description of Disease

T-prolymphocytic leukemia (T-PLL) is an aggressive form of T-cell leukemia marked by the proliferation of small to medium-sized prolymphocytes exhibiting a mature post-thymic T-cell phenotype.[1]

Synonyms / Terminology

T-cell chronic lymphocytic leukemia

Epidemiology / Prevalence

T-PLL is an uncommon disease, accounting for approximately 2% of all mature lymphoid leukemias in adults. It mainly affects older individuals, with a median onset age of 65 years, ranging from 30 to 94 years. The disorder exhibits a slight male predominance, with a male to female ratio of 1.33:1.[1]

Clinical Features

The most prevalent symptom of the disease is a leukemic presentation, characterized by a rapid, exponential increase in lymphocyte counts, which exceed 100 × 10^9/L in 75% of patients. Approximately 30% of patients may initially experience an asymptomatic, slow-progressing phase, but this typically develops into an active disease state.[1][2]

Signs and Symptoms B symptoms (Fever, night sweats, weight loss)

Hepatosplenomegaly (Frequently observed)

Generalized lymphadenopathy with slightly enlarged lymph nodes (Frequently observed)

Cutaneous involvement (20%)

Malignant effusions (15%)

Laboratory Findings Anemia and thrombocytopenia

Marked lymphocytosis > 100 × 10^9/L (75% of cases)

Atypical lymphocytosis > 5 × 10^9/L

Serum lactate dehydrogenase (LDH) (increased-may reflect disease burden)

β2 microglobulin (B2M) (increased-may reflect disease burden)

Sites of Involvement

Peripheral blood, bone marrow, spleen (mostly red pulp), liver, lymph node (mostly paracortical), and sometimes skin and serosa (primarily pleura). Extra lymphatic and extramedullary atypical manifestations including skin, muscles and intestines are particularly common in relapse.[1]

Morphologic Features

Blood smears in T-PLL typically reveal anemia, thrombocytopenia, and leukocytosis, with atypical lymphocytes in three morphological forms: The most common form (75% of cases) features medium-sized cells with a high nuclear-to-cytoplasmic ratio, moderately condensed chromatin, a single visible nucleolus, and slightly basophilic cytoplasm. In 20% of cases, the cells appear as a small cell variant with densely condensed chromatin and an inconspicuous nucleolus. About 5% of cases exhibit a cerebriform variant with irregular nuclei resembling those in mycosis fungoides. Regardless of the nuclear features, a common morphological characteristic is the presence of cytoplasmic protrusions or blebs.[3]Bone marrow aspirates show clusters of these neoplastic cells, with a mixed pattern of involvement including diffuse and interstitial, in trephine core biopsy.[2]

Immunophenotype

Cytochemistry: T-cell prolymphocytes show strong staining with alpha-naphthyl acetate esterase and acid phosphatase, presenting a distinctive dot-like pattern, but cytochemistry is not commonly used for diagnosis.[4]

Immunophenotype: T-cell prolymphocytes exhibit a post-thymic T-cell phenotype. In 60% of cases, the cells are CD4+ and CD8-. In 25% of cases, they co-express both CD4 and CD8, while the remaining 15% are CD4- and CD8+.[5]

Finding Marker
Positive (universal) cyTCL1 (highest specificity), CD2, CD3 (may be weak), CD5, CD7 (strong), TCR-α/β, S100 (30% of cases)
Positive (subset) CD4 (in some cases CD4+/CD8+ or CD4-/CD8+), CD52 (usually expressed at high density, therapeutic target), activation markers are variable (CD25, CD38, CD43, CD26, CD27)
Negative (universal) TdT, CD1a, CD57, CD16, HTLV1
Negative (subset) CD8 (in some cases CD4+/CD8+ or CD4-/CD8+)

Chromosomal Rearrangements (Gene Fusions)

Rearrangements involving the TCL1 (T-cell leukemia/lymphoma 1) family genes—TCL1A, MTCP1 (mature T-cell proliferation), or TCL1B (also known as TCL1/MTCP1-like 1 [TML1])—are highly specific to T-PLL and occur in more than 90% of cases. These translocations juxtapose the TRA locus with the oncogenes TCL1A or TCL1B, or in the case of t(X;14), with the MTCP1 gene.[2][5]

Chromosomal Rearrangement Genes in Fusion (5’ or 3’ Segments) Pathogenic Derivative Prevalence Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
inv(14)(q11.2q32.1)

t(14;14)(q11.2;q32.1)

TCL1A/B ,TRD inv(14) ~60%

t(14;14) ~25%

Yes Yes Yes These genetic abnormalities serve as diagnostic markers and generally indicate an aggressive disease. This is due to their role in overexpressing oncogenes like TCL1A. Major diagnostic criteria.[2]
t(X;14)(q28;q11.2) MTCP1, TRD Low (5%) Yes No Yes Major diagnostic criteria.[2]

Individual Region Genomic Gain / Loss / LOH

Approximately 70-80% of T-PLL karyotypes are complex, which is considered minor diagnostic criteria, and usually include 3-5 or more structural aberrations. Common cytogenetic abnormalities include those of chromosome 8, such as idic(8)(p11.2), t(8;8)(p11.2;q12), and trisomy 8q. Other frequent changes are deletions in 12p13 and 22q, gains in 8q24 (MYC), and abnormalities in chromosomes 5p, 6, and 17.[1]

Table: A list of clinically significant and/or recurrent CNAs and CN-LOH with potential or strong diagnostic, prognostic and treatment implications in T-PLL are listed below.

Chr # Gain / Loss / Amp / LOH Minimal Region Genomic Coordinates [Genome Build] Minimal Region Cytoband Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
8 Gain idic(8)(p11)

t(8;8)(p11;q12)

trisomy 8q
8q24 (MYC)

idic(8)(p11.2)

t(8;8)(p11.2;q12)

trisomy 8q
8q24 (MYC)

Yes No No Recurrent secondary finding (70-80% of cases). Minor diagnostic criteria.[2]
5 Abnormality 5p, 5q [6] Yes Yes No Minor diagnostic criteria.[2]
6 Abnormality gain of 6p, loss of 6q [7] No No No
11 Loss 11q ch11q21-q23.3 Yes Yes Yes Frequent, Minor diagnostic criteria.[2]
12 Loss 12p 12p13 Yes Yes No Haploinsufficiency of the CDKN1B gene at the 12p13 locus contributes to the development of T-PLL.[8]

Minor diagnostic criteria.[2]

13 Loss 13q 13q14.3 Yes No No Minor diagnostic criteria.[2]
17 Abnormality 17p, 17q 17p13 No Yes Yes (resistance to therapy) The TP53 gene is deleted (at 17p13.1), with overexpression of p53, in some cases. [5]
22 Loss Monosomy 22

del(22q)

22q11-12 [9][10]

(most common)

Yes No No Leading to the dysregulation of genes such as BCL11B, which is crucial in T-cell development and function.[10]

Minor diagnostic criteria.[2]

Diagnostic criteria

Diagnosis requires either all three major criteria or the first two major criteria along with one minor criterion:[1]

  • Major criteria:
    • 5 x 109/L cells of T PLL phenotype in peripheral blood or bone marrow
    • T cell clonality by molecular or flow cytometry methods
    • Abnormalities of 14q32 or Xq28 or expression of TCL1A/B or MTC
  • Minor criteria:
    • Abnormalities involving chromosome 11
    • Abnormalities in chromosome 8
    • Abnormalities in chromosome 5, 12, 13, 22 or complex karyotype
    • Involvement of specific sites (spleen, effusions)

Characteristic Chromosomal Patterns

Inv(14)(q11.2q32)

The most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1).[1] [5]

Chromosomal Pattern Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
inv(14)(q11q32)

t(14;14)(q11.2;q32.1)

Yes Yes Yes The most common chromosomal abnormality in T-PLL involves an inversion of chromosome 14, with breakpoints at q11.2 and q32.1, observed in about 60-80% of patients and described as inv(14). Additionally, in 10-20% of cases, there is a translocation t(14;14)(q11.2;q32.1)

Gene Mutations (SNV / INDEL)

Although gene mutations beyond TCL1 family alterations are not yet recognized as diagnostic criteria and remain under investigation for T-PLL, the mutational landscape of T-PLL provides valuable insights. These discoveries open up potential avenues for novel targeted therapies in treating this aggressive form of leukemia. As deletions and mutations of the ATM gene, present in up to 90% of T-PLL cases but typically absent in other mature T-cell malignancies, they are considered highly indicative in diagnosing suspected TCL1 family-negative T-PLL. [11][12]

Gene; Genetic Alteration Presumed Mechanism (Tumor Suppressor Gene [TSG] / Oncogene / Other) Prevalence (COSMIC / TCGA / Other) Concomitant Mutations Mutually Exclusive Mutations Diagnostic Significance (Yes, No or Unknown) Prognostic Significance (Yes, No or Unknown) Therapeutic Significance (Yes, No or Unknown) Notes
ATM TSG 53% (COSMIC) ATM mutation/deletion None specified Yes Yes Yes (PARP inhibitors, NCT03263637) Since deletions of or missense mutations at the ATM locus are found in up to 80% to 90% of T-PLL cases, ATM alterations can serve as a minor diagnostic criterion.[2][11]
FBXW10 TSG 72% (COSMIC) JAK/STAT pathway None specified Unknown Unknown Unknown
IL2RG, JAK1, JAK3, STAT5B Oncogene 8% JAK1

34% JAK3

16% STAT5B

2% IL2RG

(COSMIC)

(cumulative prevalence of ~ 60%)[13]

ATM, TP53, Epigenetic modifiers [14][15] Typically, mutations within this pathway occur in a mutually exclusive manner.[12] Yes Yes Yes Targeting this pathway with specific JAK/STAT pathway inhibitors, such as tofacitinib, has shown promise in preclinical studies and early clinical trials. Combining JAK/STAT inhibitors with other treatments, like BCL-2 inhibitors, may enhance therapeutic efficacy and improve outcomes for T-PLL patients[16][17]
EZH2 Oncogene, TSG 16% (COSMIC) JAK/STAT pathway[14][15] None specified No Yes See note EZH2 inhibitors like tazemetostat have shown efficacy in other hematologic malignancies, providing a rationale for their potential use in T-PLL
BCOR TSG 8% (COSMIC) JAK/STAT pathway[14][15] None specified No No (see note) No A negative impact on overall survival (OS) was not observed for T-PLL patients in the study. However, this might be attributable to the relatively low number of cases compared to studies on AML and MDS.[18]
SAMHD1 TSG ~7-20%[11][19] None specified None specified Yes Yes No SAMHD1 mutations may indicate a defective DNA damage response and aggressive disease [19]
CHEK2 TSG 5% (COSMIC) ATM, TP53, JAK/STAT pathway, Epigenetic modifiers None specified No Yes No CHEK2 mutations may indicate a defective DNA damage response and aggressive disease [12][20]
TP53 TSG 2% (COSMIC) ATM, JAK/STAT pathway, Epigenetic modifiers None specified-In a study of T-PLL case, TP53 mutations were predominantly found in patients lacking TCRA/D rearrangements.[18] No Yes Associated with resistance to therapy Mutations in TP53 are less frequent than deletions.[18]

Note: A more extensive list of mutations can be found in cBioportal (https://www.cbioportal.org/), COSMIC (https://cancer.sanger.ac.uk/cosmic), ICGC (https://dcc.icgc.org/) and/or other databases. When applicable, gene-specific pages within the CCGA site directly link to pertinent external content.

Epigenomic Alterations

Research indicates that epigenetic modifications in the regulatory regions of key oncogenes and genes involved in DNA damage response and T-cell receptor regulation are clearly present. These changes are closely associated with the transcriptional dysregulation that forms the core lesions of T-PLL.[21]

Genes and Main Pathways Involved

The key pathways involved in the pathogenesis of T-cell prolymphocytic leukemia (T-PLL) include DNA damage repair, T-cell receptor (TCR) signaling, and epigenetic modulation. Additionally, there is frequent mutational activation of the IL2RG-JAK1-JAK3-STAT5B pathway, which plays a significant role in the disease's development and progression.[2]

Gene; Genetic Alteration Pathway Pathophysiologic Outcome
TCL1A/B rearrangement AKT signaling and TCR signal amplification pathways Increased cell survival and proliferation
MTCP1 AKT signaling and TCR signal amplification pathways Increased cell survival and proliferation
ATM, CHEK2 DNA damage repair pathway Genomic instability
JAK1, JAK3, STAT5B JAK-STAT pathway Unchecked cell growth and survival
IL2RG JAK-STAT pathway, Cytokine signaling Promoting lymphocyte proliferation
EZH2 Transcription regulator Altering the epigenetic landscape

Genetic Diagnostic Testing Methods

Cytogenetics (FISH, CpG-stimulated Karyotype, SNP microarray), PCR for TRB/TRG and Next-Generation Sequencing (NGS). The genetic diagnostic process involves detecting clonal rearrangements of the TR gene and rearrangements of the TCL1 gene at the TRB or TRG loci.

Familial Forms

While there is no noticeable familial clustering of T-cell prolymphocytic leukemia (T-PLL), a subset of cases can develop in the context of ataxia-telangiectasia (AT). AT is characterized by germline mutations in the ATM gene, and patients with AT are at an increased risk for various malignancies, including T-PLL. In these cases, biallelic inactivation of the ATM tumor suppressor gene occurs, with about 10% to 15% penetrance of the tumor phenotype by early adulthood. T-PLL represents nearly 3% of all malignancies in patients with ataxia-telangiectasia​. [22] [23] [24]

Additional Information

In T-PLL, the rapid growth of the disease necessitates immediate initiation of treatment. The most effective first-line treatment is alemtuzumab, an anti-CD52 antibody with remission rates over 80%. However, these remissions usually last only 1-2 years. To potentially extend remission, eligible patients are advised to undergo allogeneic blood stem cell transplantation (allo-SCT) during their first complete remission, which can lead to longer remission durations of over 4-5 years for 15-30% of patients. Consequently, the prognosis for T-PLL remains poor, with median overall survival times under two years and five-year survival rates below 5%. Ongoing studies are exploring molecularly targeted drugs and signaling pathway inhibitors, for routine clinical use in treating T-PLL.

Links

(use the "Link" icon that looks like two overlapping circles at the top of the page) (Instructions: Highlight text to which you want to add a link in this section or elsewhere, select the "Link" icon at the top of the page, and search the name of the internal page to which you want to link this text, or enter an external internet address by including the "http://www." portion.)

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 Elenitoba-Johnson K, et al. T-prolymphocytic leukemia. In: WHO Classification of Tumours Editorial Board. Haematolymphoid tumours [Internet]. Lyon (France): International Agency for Research on Cancer; 2024 [cited 2024 June 12]. (WHO classification of tumors series, 5th ed.; vol. 11). Available from: https://tumourclassification.iarc.who.int/chaptercontent/63/209
  2. 2.00 2.01 2.02 2.03 2.04 2.05 2.06 2.07 2.08 2.09 2.10 2.11 2.12 Staber, Philipp B.; et al. (2019-10-03). "Consensus criteria for diagnosis, staging, and treatment response assessment of T-cell prolymphocytic leukemia". Blood. 134 (14): 1132–1143. doi:10.1182/blood.2019000402. ISSN 1528-0020. PMC 7042666 Check |pmc= value (help). PMID 31292114.
  3. Gutierrez, Marc; et al. (2023-07-28). "T-Cell Prolymphocytic Leukemia: Diagnosis, Pathogenesis, and Treatment". International Journal of Molecular Sciences. 24 (15): 12106. doi:10.3390/ijms241512106. ISSN 1422-0067. PMC PMC10419310 Check |pmc= value (help). PMID 37569479 Check |pmid= value (help).CS1 maint: PMC format (link)
  4. Yang, K.; et al. (1982-08). "Acid phosphatase and alpha-naphthyl acetate esterase in neoplastic and non-neoplastic lymphocytes. A statistical analysis". American Journal of Clinical Pathology. 78 (2): 141–149. doi:10.1093/ajcp/78.2.141. ISSN 0002-9173. PMID 6179423. Check date values in: |date= (help)
  5. 5.0 5.1 5.2 5.3 Matutes E, et al., (2017). T-cell prolymphocytic leukemia, in World Health Organization Classification of Tumours of Haematopoietic and Lymphoid Tissues, Revised 4th edition. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J, Arber DA, Hasserjian RP, Le Beau MM, Orazi A, and Siebert R, Editors. Revised 4th Edition. IARC Press: Lyon, France, p346-347.
  6. Tirado, Carlos A.; et al. (2012-08-20). ""T-cell prolymphocytic leukemia (T-PLL), a heterogeneous disease exemplified by two cases and the important role of cytogenetics: a multidisciplinary approach"". Experimental Hematology & Oncology. 1 (1): 21. doi:10.1186/2162-3619-1-21. ISSN 2162-3619. PMC 3514161. PMID 23211026.
  7. Dearden, Claire (2012-07-19). "How I treat prolymphocytic leukemia". Blood. 120 (3): 538–551. doi:10.1182/blood-2012-01-380139. ISSN 1528-0020. PMID 22649104.
  8. Le Toriellec, Emilie; et al. (2008-02-15). "Haploinsufficiency of CDKN1B contributes to leukemogenesis in T-cell prolymphocytic leukemia". Blood. 111 (4): 2321–2328. doi:10.1182/blood-2007-06-095570. ISSN 0006-4971. PMID 18073348.
  9. Stengel, Anna; et al. (2014-12-06). "A Comprehensive Cytogenetic and Molecular Genetic Characterization of Patients with T-PLL Revealed Two Distinct Genetic Subgroups and JAK3 Mutations As an Important Prognostic Marker". Blood. 124 (21): 1639–1639. doi:10.1182/blood.v124.21.1639.1639. ISSN 0006-4971.
  10. 10.0 10.1 Fang, Hong; et al. (2023-09). "T-prolymphocytic leukemia: TCL1 or MTCP1 rearrangement is not mandatory to establish diagnosis". Leukemia. 37 (9): 1919–1921. doi:10.1038/s41375-023-01956-3. ISSN 1476-5551. PMID 37443196 Check |pmid= value (help). Check date values in: |date= (help)
  11. 11.0 11.1 11.2 Schrader, A.; et al. (2018-02-15). "Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL". Nature Communications. 9 (1): 697. doi:10.1038/s41467-017-02688-6. ISSN 2041-1723. PMC 5814445. PMID 29449575.
  12. 12.0 12.1 12.2 Kiel, Mark J.; et al. (2014-08-28). "Integrated genomic sequencing reveals mutational landscape of T-cell prolymphocytic leukemia". Blood. 124 (9): 1460–1472. doi:10.1182/blood-2014-03-559542. ISSN 1528-0020. PMC 4148768. PMID 24825865.
  13. Wahnschaffe, Linus; et al. (2019-11-21). "JAK/STAT-Activating Genomic Alterations Are a Hallmark of T-PLL". Cancers. 11 (12): 1833. doi:10.3390/cancers11121833. ISSN 2072-6694. PMC 6966610. PMID 31766351.
  14. 14.0 14.1 14.2 Andersson, E. I.; et al. (2018-03). "Discovery of novel drug sensitivities in T-PLL by high-throughput ex vivo drug testing and mutation profiling". Leukemia. 32 (3): 774–787. doi:10.1038/leu.2017.252. ISSN 1476-5551. PMID 28804127. Check date values in: |date= (help)
  15. 15.0 15.1 15.2 Pinter-Brown, Lauren C. (2021-12-30). "JAK/STAT: a pathway through the maze of PTCL?". Blood. 138 (26): 2747–2748. doi:10.1182/blood.2021014238. ISSN 0006-4971.
  16. Gomez-Arteaga, Alexandra; et al. (2019-07). "Combined use of tofacitinib (pan-JAK inhibitor) and ruxolitinib (a JAK1/2 inhibitor) for refractory T-cell prolymphocytic leukemia (T-PLL) with a JAK3 mutation". Leukemia & Lymphoma. 60 (7): 1626–1631. doi:10.1080/10428194.2019.1594220. ISSN 1029-2403. PMC 8162842 Check |pmc= value (help). PMID 30997845. Check date values in: |date= (help)
  17. . doi:10.1182/blood.v126.23.5486.5486 https://ashpublications.org/blood/article/126/23/5486/134544/Refractory-TCell-Prolymphocytic-Leukemia-with-JAK3. Missing or empty |title= (help)
  18. 18.0 18.1 18.2 Stengel, Anna; et al. (2016-01). "Genetic characterization of T-PLL reveals two major biologic subgroups and JAK3 mutations as prognostic marker". Genes, Chromosomes & Cancer. 55 (1): 82–94. doi:10.1002/gcc.22313. ISSN 1098-2264. PMID 26493028. Check date values in: |date= (help)
  19. 19.0 19.1 Johansson, Patricia; et al. (2018-01-19). "SAMHD1 is recurrently mutated in T-cell prolymphocytic leukemia". Blood Cancer Journal. 8 (1): 11. doi:10.1038/s41408-017-0036-5. ISSN 2044-5385. PMC 5802577. PMID 29352181.
  20. Braun, Till; et al. (2021). "Advanced Pathogenetic Concepts in T-Cell Prolymphocytic Leukemia and Their Translational Impact". Frontiers in Oncology. 11: 775363. doi:10.3389/fonc.2021.775363. ISSN 2234-943X. PMC 8639578 Check |pmc= value (help). PMID 34869023 Check |pmid= value (help).
  21. Tian, Shulan; et al. (2021-04-15). "Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia". Scientific Reports. 11 (1): 8318. doi:10.1038/s41598-021-87890-9. ISSN 2045-2322. PMC 8050249 Check |pmc= value (help). PMID 33859327 Check |pmid= value (help).
  22. Suarez, Felipe; et al. (2015-01-10). "Incidence, presentation, and prognosis of malignancies in ataxia-telangiectasia: a report from the French national registry of primary immune deficiencies". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 33 (2): 202–208. doi:10.1200/JCO.2014.56.5101. ISSN 1527-7755. PMID 25488969.
  23. Taylor, A. M.; et al. (1996-01-15). "Leukemia and lymphoma in ataxia telangiectasia". Blood. 87 (2): 423–438. ISSN 0006-4971. PMID 8555463.
  24. Li, Geling; et al. (2017-12-26). "T-cell prolymphocytic leukemia in an adolescent with ataxia-telangiectasia: novel approach with a JAK3 inhibitor (tofacitinib)". Blood Advances. 1 (27): 2724–2728. doi:10.1182/bloodadvances.2017010470. ISSN 2473-9529. PMC 5745136. PMID 29296924.

Notes

*Primary authors will typically be those that initially create and complete the content of a page. If a subsequent user modifies the content and feels the effort put forth is of high enough significance to warrant listing in the authorship section, please contact the CCGA coordinators (contact information provided on the homepage). Additional global feedback or concerns are also welcome.