CLL Tables: Regions of Recurrent Copy Number Change and CN-LOH

From Compendium of Cancer Genome Aberrations
Jump to navigation Jump to search

Table 1 - Regions of Recurrent Copy Number Change in CLL (Literature Review). The is a list of clinically significant and/or recurrent CNAs selected and evaluated based on a systematic literature search performed on 72 peer-reviewed manuscripts focusing on CNAs and CN-LOH assessment in CLL published between 2000 and 2017. Table derived from Chun et al., 2018 [PMID 30554732] with permission from Cancer Genetics.

Chromosome/

Region

Abnormality Type Prevalence (%) Relevant Genes Strength of Evidence for Gene Prognostic Significance Strength of Evidence for Prognosis (Level*) Comments References
1p Gain ?2-5 Unknown N/A Favorable Suspected (2) [1] [2] [3]
1q23.2q23.3 Loss 15 Unknown N/A Unknown N/A (3) [4] [5] [6]
2p12p25.3 Gain 5-30 ACP1, MYCN, ALK, REL, BCL11A MYCN (Established), REL, BCL11A (Candidate) Unfavorable Established (if MYCN included) (1) [1] [2] [3] [4] [5] [7] [8] [9] [10] [11] [12] [13]
3p21.31 Loss 1-5 ATRIP, CDC25A Candidate Unknown N/A (3) [4] [14] [15]
3q Gain 2-19 Unknown N/A Unfavorable Suspected (2) Appears to be particularly prevalent in Japanese [2] [16] [17]
4p15.2p16.3 Loss 14 Unknown N/A Unfavorable (occurred with del(11q) or del(17p)) Suspected (2) [18]
6p25.3 Gain 1 Unknown N/A Unknown N/A (3) [4]
6p22.1 Loss 1 Histone cluster, HFE Candidate Unknown N/A (3) [4]
6q Loss 3-6 FOXO3 Candidate Intermediate Suspected (2) [19] [20] [21] [22]
7p Gain 5-6 Unknown N/A Intermediate Suspected (2) [2]
7q Loss 1-2 Unknown N/A Unknown N/A (3) [2] [10]
8p21 Loss 2-5 TRIM35 Candidate Unfavorable Suspected (2) Associated with established unfavorable changes (11q- and 17p-). Not established as an independent prognosticator [2] [23]
8q24.1 Gain 5 MYC Candidate Unfavorable Suspected (2) Often associated with 11q and 17p deletion; may not be independent [2] [2] [4]
9q13q21.11 Loss 1 Unknown N/A Unknown N/A (3) [4]
10q24 Loss 2 Unknown N/A Unknown N/A (3) Clustered around NFKB2 gene locus [4] [9] [24]
11q22.3 Loss 10-20 ATM, BIRC3, MRE11, H2AFX ATM established, Others Candidate Unfavorable Established (1) [25]
12 Gain 10-20 Unknown N/A Intermediate Established (1) Unfavorable if NOTCH1 mutation is present [25]
13q14 Loss 50-60 DLEU2, MIR15A, MIR16-1, DLEU1 Established Favorable Established (1) Co-deletion of RB1 may negatively impact time to treatment [25] [26] [27]
14q24.1q32.3 Loss 2 Unknown N/A Unknown N/A (3) Associated with trisomy 12 [4] [28] [29]
15q15.1 Loss 4 MGA Candidate Unknown N/A (3) [4] [9]
17p13.1 Loss 5-15 TP53 Established Unfavorable Established (1) [25]
17q Gain 1 Unknown N/A Unfavorable Suspected (2) [2]
18p Loss 3 Unknown N/A Unfavorable Suspected (2) [2] [4]
18 Gain 4 Unknown N/A Unfavorable Established (1) Associated with trisomy 12 [30]
19 Gain 2-5 Unknown N/A Unfavorable Established (1) Associated with trisomy 12 [4] [9] [18] [24] [30]
Genomic complexity 3 or more CNAs 10-15 N/A Unfavorable Established (1) [9] [10] [14] [31]
Chromothripsis (>10 copy number states of 2 and 3) 5 SETD2, other markers across genome not defined Established Unfavorable Established (1) [4] [27] [32]

*Level 1: present in WHO classification or professional practice guidelines; Level 2: recurrent in well-powered studies with suspected clinical significance; Level 3: recurrent, but uncertain prognostic significance.

Abbreviations: CNA = copy number aberration; CLL = chronic lymphocytic leukemia; CN-LOH = copy-neutral loss-of-heterozygosity


Table 2 - Recurring regions of CN-LOH in CLL. Table derived from Chun et al., 2018 [PMID 30554732] with permission from Cancer Genetics.

CN-LOH Candidate Gene Association Strength of Evidence for Prognosis (Level*) References
13q miR15a/16-1 Biallelic deletion of 13q Established (1) [33] [34] [35] [36] [37] [38] [39] [40]
17p13 TP53 Homozygous TP53 mutations Established (1) [33] [35] [41] [38] [42]
11q13-qter Includes ATM Monoallelic ATM deletion Suspected (2) [35] [38]
20q11 Unknown None N/A (3) [41] [43]
1p36 Unknown None N/A (3) [35] [44]

*Level 1: present in WHO classification or professional practice guidelines; Level 2: recurrent in well-powered studies with suspected clinical significance; Level 3: recurrent, but uncertain prognostic significance


Table 3 - Recurrent mutated genes in CLL. Table derived from Chun et al., 2018 [PMID 30554732] with permission from Cancer Genetics.

Gene Locus Function Mutation Type Prevalence (%) Prognostic Significance Strength of Evidence (Level*) Comments References
ATM 11q22.3 DNA repair and cell-cycle control Missense, nonsense, indel 10-14 Unfavorable Established (1) Associated with unmutIGHV and 11q-; Candidate driver gene [45] [46]
BIRC3 11q22.2 Apoptosis inhibitor Frameshift, nonsense, whole gene deletion 1-10

(higher in previously treated patients)

Unfavorable Established (1) In ~25% of fludarabine-refractory CLL; Candidate driver gene [47] [48] [49] [50]
CHD2 15q26.1 Chromatin remodeler Missense, truncation 5-10 Unknown N/A (3) [47] [51]
FBXW7 4q31.3 Ubiquitin ligase subunit/targets include NOTCH1 Missense 4 Unknown N/A (3) Exclusive to NOTCH1 mutation patients; Negatively regulates NOTCH1 [52]
MYD88 3p22.2 Inflammatory pathway signal transducer Missense 2-10 Favorable/

No effect

Suspected (2) Candidate driver gene [49] [50] [53]
NOTCH1 9q34.3 Intercellular signaling Missense, nonsense, insertion, duplication, frameshift 4-10

(diagnosis)

12-30

(progression)

Unfavorable Established (1) Associated with +12; Candidate driver gene [54] [46] [50] [55] [56]
POT1 7q31.33 Telomere protector/

stabilizer; component of telomerase RNP complex

Missense, frameshift, splicing 5-10 Unfavorable Suspected (2) Associated with familial CLL [57] [58] [59]
SF3B1 2q33.1 Spliceosome component Missense 10 -18 Unfavorable Established (1) Enriched in patients with del(11q) and unmutIGHV; Candidate driver gene for disease progression [49] [50] [60] [61] [62]
TP53 17p13.1 DNA repair and cell-cycle control Missense 5-10

(higher with progressive disease)

Unfavorable Established (1) [45] [47] [63] [64] [65]
XPO1 2p15 Exports proteins/RNA fragments from nucleus into cytoplasm Missense 5-7.5 Unfavorable/

high risk of progression

Suspected (2) Associated with unmutIGHV [66] [53] [67]

*Level 1: present in WHO classification or professional practice guidelines; Level 2: recurrent in well-powered studies with suspected clinical significance; Level 3: recurrent, but uncertain prognostic significance

Reference

  1. Jump up to: 1.0 1.1 D, Pfeifer; et al. (2007). "Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays". PMID 17053054.
  2. Jump up to: 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 J, Houldsworth; et al. (2014). "Genomic imbalance defines three prognostic groups for risk stratification of patients with chronic lymphocytic leukemia". doi:10.3109/10428194.2013.845882. PMC 6905429. PMID 24047479.CS1 maint: PMC format (link)
  3. Jump up to: 3.0 3.1 E, Chapiro; et al. (2010). "Gain of the short arm of chromosome 2 (2p) is a frequent recurring chromosome aberration in untreated chronic lymphocytic leukemia (CLL) at advanced stages". PMID 19406473.
  4. Jump up to: 4.00 4.01 4.02 4.03 4.04 4.05 4.06 4.07 4.08 4.09 4.10 4.11 4.12 J, Edelmann; et al. (2012). "High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations". PMID 23047824.
  5. Jump up to: 5.0 5.1 D, Ma; et al. (2011). "Array comparative genomic hybridization analysis identifies recurrent gain of chromosome 2p25.3 involving the ACP1 and MYCN genes in chronic lymphocytic leukemia". doi:10.1016/j.clml.2011.03.031. PMC 4845643. PMID 22035742.CS1 maint: PMC format (link)
  6. A, Tyybakinoja; et al. (2007). "High-resolution oligonucleotide array-CGH pinpoints genes involved in cryptic losses in chronic lymphocytic leukemia". PMID 17901694.
  7. L, Shao; et al. (2010). "Array comparative genomic hybridization detects chromosomal abnormalities in hematological cancers that are not detected by conventional cytogenetics". doi:10.2353/jmoldx.2010.090192. PMC 2928432. PMID 20724749.CS1 maint: PMC format (link)
  8. A, Patel; et al. (2008). "Validation of a targeted DNA microarray for the clinical evaluation of recurrent abnormalities in chronic lymphocytic leukemia". PMID 18161787.
  9. Jump up to: 9.0 9.1 9.2 9.3 9.4 Mj, Stevens-Kroef; et al. (2014). "Identification of prognostic relevant chromosomal abnormalities in chronic lymphocytic leukemia using microarray-based genomic profiling". doi:10.1186/1755-8166-7-3. PMC 3905918. PMID 24401281.CS1 maint: PMC format (link)
  10. Jump up to: 10.0 10.1 10.2 Cd, Schweighofer; et al. (2013). "Genomic variation by whole-genome SNP mapping arrays predicts time-to-event outcome in patients with chronic lymphocytic leukemia: a comparison of CLL and HapMap genotypes". doi:10.1016/j.jmoldx.2012.09.006. PMC 3586684. PMID 23273604.CS1 maint: PMC format (link)
  11. S, Fabris; et al. (2013). "Chromosome 2p gain in monoclonal B-cell lymphocytosis and in early stage chronic lymphocytic leukemia". PMID 23044996.
  12. F, Forconi; et al. (2008). "Genome-wide DNA analysis identifies recurrent imbalances predicting outcome in chronic lymphocytic leukaemia with 17p deletion". PMID 18752589.
  13. M, Jarosova; et al. (2010). "Gain of chromosome 2p in chronic lymphocytic leukemia: significant heterogeneity and a new recurrent dicentric rearrangement". PMID 20078324.
  14. Jump up to: 14.0 14.1 Ka, Kolquist; et al. (2011). "Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analysis uncovers novel aberrations not detected by FISH or cytogenetic analysis". doi:10.1186/1755-8166-4-25. PMC 3253687. PMID 22087757.CS1 maint: PMC format (link)
  15. I, Salaverria; et al. (2015). "Detection of chromothripsis-like patterns with a custom array platform for chronic lymphocytic leukemia". doi:10.1002/gcc.22277. PMC 4832286. PMID 26305789.CS1 maint: PMC format (link)
  16. N, Kawamata; et al. (2013). "Genetic differences between Asian and Caucasian chronic lymphocytic leukemia". doi:10.3892/ijo.2013.1966. PMC 3775563. PMID 23708256.CS1 maint: PMC format (link)
  17. K, Tsukasaki; et al. (2006). "Comparative genomic hybridization analysis of Japanese B-cell chronic lymphocytic leukemia: correlation with clinical course". PMID 16321855.
  18. Jump up to: 18.0 18.1 R, Gunnarsson; et al. (2011). "Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia". doi:10.3324/haematol.2010.039768. PMC 3148910. PMID 21546498.CS1 maint: PMC format (link)
  19. A, Cuneo; et al. (2004). "Chronic lymphocytic leukemia with 6q- shows distinct hematological features and intermediate prognosis". PMID 14712287.
  20. Dm, Wang; et al. (2011). "Intermediate prognosis of 6q deletion in chronic lymphocytic leukemia". PMID 21281237.
  21. M, Jarosova; et al. (2017). "Chromosome 6q deletion correlates with poor prognosis and low relative expression of FOXO3 in chronic lymphocytic leukemia patients". PMID 28699185.
  22. C, Nabhan; et al. (2015). "Predicting Prognosis in Chronic Lymphocytic Leukemia in the Contemporary Era". PMID 26181643.
  23. V, Grubor; et al. (2009). "Novel genomic alterations and clonal evolution in chronic lymphocytic leukemia revealed by representational oligonucleotide microarray analysis (ROMA)". PMID 18922857.
  24. Jump up to: 24.0 24.1 C, Schwaenen; et al. (2004). "Automated array-based genomic profiling in chronic lymphocytic leukemia: development of a clinical tool and discovery of recurrent genomic alterations". doi:10.1073/pnas.0304717101. PMC 327147. PMID 14730057.CS1 maint: PMC format (link)
  25. Jump up to: 25.0 25.1 25.2 25.3 Wg, Wierda; et al. (2017). "NCCN Guidelines Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 1.2017". PMID 28275031.
  26. M, Dal Bo; et al. (2011). "13q14 deletion size and number of deleted cells both influence prognosis in chronic lymphocytic leukemia". PMID 21563234.
  27. Jump up to: 27.0 27.1 Sn, Malek (2013). "The biology and clinical significance of acquired genomic copy number aberrations and recurrent gene mutations in chronic lymphocytic leukemia". doi:10.1038/onc.2012.411. PMC 3676480. PMID 23001040.CS1 maint: PMC format (link)
  28. Pt, Greipp; et al. (2013). "Patients with chronic lymphocytic leukaemia and clonal deletion of both 17p13.1 and 11q22.3 have a very poor prognosis". doi:10.1111/bjh.12534. PMC 3907074. PMID 24032430.CS1 maint: PMC format (link)
  29. A, Cosson; et al. (2014). "14q deletions are associated with trisomy 12, NOTCH1 mutations and unmutated IGHV genes in chronic lymphocytic leukemia and small lymphocytic lymphoma". PMID 24729385.
  30. Jump up to: 30.0 30.1 R, Ibbotson; et al. (2012). "Coexistence of trisomies of chromosomes 12 and 19 in chronic lymphocytic leukemia occurs exclusively in the rare IgG-positive variant". PMID 21788947.
  31. Sr, Gunn; et al. (2008). "The HemeScan test for genomic prognostic marker assessment in chronic lymphocytic leukemia". PMID 23495782.
  32. H, Parker; et al. (2016). "Genomic disruption of the histone methyltransferase SETD2 in chronic lymphocytic leukaemia". doi:10.1038/leu.2016.134. PMC 5023049. PMID 27282254.CS1 maint: PMC format (link)
  33. Jump up to: 33.0 33.1 Hagenkord, Jill M.; et al. (2010-03). "Array-based karyotyping for prognostic assessment in chronic lymphocytic leukemia: performance comparison of Affymetrix 10K2.0, 250K Nsp, and SNP6.0 arrays". The Journal of molecular diagnostics: JMD. 12 (2): 184–196. doi:10.2353/jmoldx.2010.090118. ISSN 1943-7811. PMC 2871725. PMID 20075210. Check date values in: |date= (help)
  34. Pfeifer, Dietmar; et al. (2007-02-01). "Genome-wide analysis of DNA copy number changes and LOH in CLL using high-density SNP arrays". Blood. 109 (3): 1202–1210. doi:10.1182/blood-2006-07-034256. ISSN 0006-4971. PMID 17053054.
  35. Jump up to: 35.0 35.1 35.2 35.3 Edelmann, Jennifer; et al. (2012-12-06). "High-resolution genomic profiling of chronic lymphocytic leukemia reveals new recurrent genomic alterations". Blood. 120 (24): 4783–4794. doi:10.1182/blood-2012-04-423517. ISSN 1528-0020. PMID 23047824.
  36. Grygalewicz, Beata; et al. (2016). "Monoallelic and biallelic deletions of 13q14 in a group of CLL/SLL patients investigated by CGH Haematological Cancer and SNP array (8x60K)". Molecular Cytogenetics. 9: 1. doi:10.1186/s13039-015-0212-x. ISSN 1755-8166. PMC 4702365. PMID 26740820.
  37. Gunnarsson, Rebeqa; et al. (2011-08). "Array-based genomic screening at diagnosis and during follow-up in chronic lymphocytic leukemia". Haematologica. 96 (8): 1161–1169. doi:10.3324/haematol.2010.039768. ISSN 1592-8721. PMC 3148910. PMID 21546498. Check date values in: |date= (help)
  38. Jump up to: 38.0 38.1 38.2 Parker, H.; et al. (2011-03). "13q deletion anatomy and disease progression in patients with chronic lymphocytic leukemia". Leukemia. 25 (3): 489–497. doi:10.1038/leu.2010.288. ISSN 1476-5551. PMID 21151023. Check date values in: |date= (help)
  39. Lehmann, Sören; et al. (2008-03-15). "Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia". Cancer. 112 (6): 1296–1305. doi:10.1002/cncr.23270. ISSN 0008-543X. PMID 18246537.
  40. Ouillette, Peter; et al. (2011-11-01). "The prognostic significance of various 13q14 deletions in chronic lymphocytic leukemia". Clinical Cancer Research: An Official Journal of the American Association for Cancer Research. 17 (21): 6778–6790. doi:10.1158/1078-0432.CCR-11-0785. ISSN 1078-0432. PMC 3207001. PMID 21890456.
  41. Jump up to: 41.0 41.1 Stevens-Kroef, Marian Jpl; et al. (2014-01-09). "Identification of prognostic relevant chromosomal abnormalities in chronic lymphocytic leukemia using microarray-based genomic profiling". Molecular Cytogenetics. 7 (1): 3. doi:10.1186/1755-8166-7-3. ISSN 1755-8166. PMC 3905918. PMID 24401281.
  42. Saddler, Chris; et al. (2008-02-01). "Comprehensive biomarker and genomic analysis identifies p53 status as the major determinant of response to MDM2 inhibitors in chronic lymphocytic leukemia". Blood. 111 (3): 1584–1593. doi:10.1182/blood-2007-09-112698. ISSN 0006-4971. PMID 17971485.
  43. Pei, Jianming; et al. (2014-03). "Copy neutral loss of heterozygosity in 20q in chronic lymphocytic leukemia/small lymphocytic lymphoma". Cancer Genetics. 207 (3): 98–102. doi:10.1016/j.cancergen.2014.02.005. ISSN 2210-7762. PMC 4010307. PMID 24704113. Check date values in: |date= (help)
  44. Xu, Xinjie; et al. (2013-09). "The advantage of using SNP array in clinical testing for hematological malignancies--a comparative study of three genetic testing methods". Cancer Genetics. 206 (9–10): 317–326. doi:10.1016/j.cancergen.2013.09.001. ISSN 2210-7762. PMID 24269304. Check date values in: |date= (help)
  45. Jump up to: 45.0 45.1 Wierda, William G.; et al. (03 2017). "NCCN Guidelines Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 1.2017". Journal of the National Comprehensive Cancer Network: JNCCN. 15 (3): 293–311. doi:10.6004/jnccn.2017.0030. ISSN 1540-1413. PMID 28275031. Check date values in: |date= (help)
  46. Jump up to: 46.0 46.1 Campregher, Paulo Vidal; et al. (2014-08). "Novel prognostic gene mutations identified in chronic lymphocytic leukemia and their impact on clinical practice". Clinical Lymphoma, Myeloma & Leukemia. 14 (4): 271–276. doi:10.1016/j.clml.2013.12.016. ISSN 2152-2669. PMID 24548608. Check date values in: |date= (help)
  47. Jump up to: 47.0 47.1 47.2 Strefford, Jonathan C. (2015-04). "The genomic landscape of chronic lymphocytic leukaemia: biological and clinical implications". British Journal of Haematology. 169 (1): 14–31. doi:10.1111/bjh.13254. ISSN 1365-2141. PMID 25496136. Check date values in: |date= (help)
  48. Alsolami, Reem; et al. (2013-06-01). "Clinical application of targeted and genome-wide technologies: can we predict treatment responses in chronic lymphocytic leukemia?". Personalized Medicine. 10 (4): 361–376. doi:10.2217/pme.13.33. ISSN 1741-0541. PMC 3943176. PMID 24611071.
  49. Jump up to: 49.0 49.1 49.2 Baliakas, P.; et al. (2015-02). "Recurrent mutations refine prognosis in chronic lymphocytic leukemia". Leukemia. 29 (2): 329–336. doi:10.1038/leu.2014.196. ISSN 1476-5551. PMID 24943832. Check date values in: |date= (help)
  50. Jump up to: 50.0 50.1 50.2 50.3 Rossi, Davide; et al. (2013-02-21). "Integrated mutational and cytogenetic analysis identifies new prognostic subgroups in chronic lymphocytic leukemia". Blood. 121 (8): 1403–1412. doi:10.1182/blood-2012-09-458265. ISSN 1528-0020. PMC 3578955. PMID 23243274.
  51. Rodríguez, David; et al. (2015-07-09). "Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic leukemia". Blood. 126 (2): 195–202. doi:10.1182/blood-2014-10-604959. ISSN 1528-0020. PMID 26031915.
  52. Wang, Lili; et al. (2011-12-29). "SF3B1 and other novel cancer genes in chronic lymphocytic leukemia". The New England Journal of Medicine. 365 (26): 2497–2506. doi:10.1056/NEJMoa1109016. ISSN 1533-4406. PMC 3685413. PMID 22150006.
  53. Jump up to: 53.0 53.1 Filip, Agata A. (2013-09). "New boys in town: prognostic role of SF3B1, NOTCH1 and other cryptic alterations in chronic lymphocytic leukemia and how it works". Leukemia & Lymphoma. 54 (9): 1876–1881. doi:10.3109/10428194.2013.769049. ISSN 1029-2403. PMID 23343182. Check date values in: |date= (help)
  54. Nabhan, Chadi; et al. (2015-10). "Predicting Prognosis in Chronic Lymphocytic Leukemia in the Contemporary Era". JAMA oncology. 1 (7): 965–974. doi:10.1001/jamaoncol.2015.0779. ISSN 2374-2445. PMID 26181643. Check date values in: |date= (help)
  55. Balatti, Veronica; et al. (2012-01-12). "NOTCH1 mutations in CLL associated with trisomy 12". Blood. 119 (2): 329–331. doi:10.1182/blood-2011-10-386144. ISSN 1528-0020. PMC 3257004. PMID 22086416.
  56. Del Giudice, Ilaria; et al. (2012-03). "NOTCH1 mutations in +12 chronic lymphocytic leukemia (CLL) confer an unfavorable prognosis, induce a distinctive transcriptional profiling and refine the intermediate prognosis of +12 CLL". Haematologica. 97 (3): 437–441. doi:10.3324/haematol.2011.060129. ISSN 1592-8721. PMC 3291600. PMID 22207691. Check date values in: |date= (help)
  57. Herling, Carmen Diana; et al. (07 21, 2016). "Complex karyotypes and KRAS and POT1 mutations impact outcome in CLL after chlorambucil-based chemotherapy or chemoimmunotherapy". Blood. 128 (3): 395–404. doi:10.1182/blood-2016-01-691550. ISSN 1528-0020. PMID 27226433. Check date values in: |date= (help)
  58. Ramsay, Andrew J.; et al. (2013-05). "POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia". Nature Genetics. 45 (5): 526–530. doi:10.1038/ng.2584. ISSN 1546-1718. PMID 23502782. Check date values in: |date= (help)
  59. Speedy, Helen E.; et al. (11 10, 2016). "Germ line mutations in shelterin complex genes are associated with familial chronic lymphocytic leukemia". Blood. 128 (19): 2319–2326. doi:10.1182/blood-2016-01-695692. ISSN 1528-0020. PMC 5271173. PMID 27528712. Check date values in: |date= (help)
  60. Mitsui, Takeki; et al. (2016-02). "SF3B1 and IGHV gene mutation status predict poor prognosis in Japanese CLL patients". International Journal of Hematology. 103 (2): 219–226. doi:10.1007/s12185-015-1912-z. ISSN 1865-3774. PMID 26588928. Check date values in: |date= (help)
  61. Quesada, Víctor; et al. (2011-12-11). "Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia". Nature Genetics. 44 (1): 47–52. doi:10.1038/ng.1032. ISSN 1546-1718. PMID 22158541.
  62. Wan, Youzhong; et al. (2013-06-06). "SF3B1 mutations in chronic lymphocytic leukemia". Blood. 121 (23): 4627–4634. doi:10.1182/blood-2013-02-427641. ISSN 1528-0020. PMC 3674664. PMID 23568491.
  63. Rossi, Davide; et al. (2014-04-03). "Clinical impact of small TP53 mutated subclones in chronic lymphocytic leukemia". Blood. 123 (14): 2139–2147. doi:10.1182/blood-2013-11-539726. ISSN 1528-0020. PMC 4017291. PMID 24501221.
  64. Zenz, Thorsten; et al. (2010-10-10). "TP53 mutation and survival in chronic lymphocytic leukemia". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 28 (29): 4473–4479. doi:10.1200/JCO.2009.27.8762. ISSN 1527-7755. PMID 20697090.
  65. Stilgenbauer, Stephan; et al. (2014-05-22). "Gene mutations and treatment outcome in chronic lymphocytic leukemia: results from the CLL8 trial". Blood. 123 (21): 3247–3254. doi:10.1182/blood-2014-01-546150. ISSN 1528-0020. PMID 24652989.
  66. Cosson, A.; et al. (07 2017). "Gain in the short arm of chromosome 2 (2p+) induces gene overexpression and drug resistance in chronic lymphocytic leukemia: analysis of the central role of XPO1". Leukemia. 31 (7): 1625–1629. doi:10.1038/leu.2017.100. ISSN 1476-5551. PMID 28344316. Check date values in: |date= (help)
  67. Jain, Nitin; et al. (2015-07-23). "Initial treatment of CLL: integrating biology and functional status". Blood. 126 (4): 463–470. doi:10.1182/blood-2015-04-585067. ISSN 1528-0020. PMC 4624441. PMID 26065656.