B-ALL Tables: Prognostic Genomic Abnormalities and Recurrent Gene Fusions
Table 1 - Prevalence and prognosis of B-ALL genomic abnormalities in the pediatric and adult population for all categories reported to date. Of the Ph-like category, only CRLF2 and ABL1-class rearrangements are indicated. Table derived from Akkari et al., 2020 [PMID 32302940] with permission from Cancer Genetics. All percentages are approximate.
Percentage of B-ALL Cases | |||
Genomic abnormality | Pediatric | Adult | Prognosis |
t(12;21)(p13;q22); ETV6-RUNX1* | 25% | 3% | Favorable |
Hyperdiploidy* | 25% | 5-7% | Favorable |
t(9;22)(q34;q11.2); BCR-ABL1* | 2-4% | 25-30% | Poor (outcome may improve with TKI) |
CRLF2 (PAR1, Xp22.33/Yp11.2) (Ph-like) | 5% | 20% | Poor |
ABL-Class fusions (Ph-like) | 3-5% | 2-3% | Poor (outcome may improve with TKI) |
KMT2A (11q23) rearrangements* | 5% | 10% | Poor |
t(1;19)(q23;p13.3); TCF3-PBX1* | 5% | 3% | Favorable |
TCF3 (19p13.3) rearrangements (excluding ZNF384) | >1% | >1% | Extremely Poor |
Hypodiploidy* | 1-2% | 15% | Poor |
dic(9;12)(p13;p13) | 1% | Rare | Favorable |
dic(9:20)(p13;q11) | 2% | 1% | Favorable |
t(4;14)(q35.2;q32); IGH/DUX4 | 5-9% | 5% | Favorable |
t(5;14)(q31.1;q32.1); IGH/IL3* | 1% | 1% | Unknown |
ZNF384 (12p13.31) rearrangements | 1-5% | 2-7% | Favorable |
iAMP21 (RUNX1)* | 2% | Rare | Poor |
IKZF1 deletions | 15-20% | 25-30% | Poor except in combination with ERG del |
*indicates 2016 WHO entities including provisional categories.
Table 2 - Gene fusions reported in Ph-like B-ALL and other new B-ALL molecular subtypes (Literature Review). Table derived from Akkari et al., 2020 [PMID 32302940] with permission from Cancer Genetics.
Subtype | 3’ Partner | 5’ Partner | Chromosome rearrangement | Gene fusion | Visible by G-banding | References | Comment |
Ph-like
B-ALL |
ABL1
(9q34) |
CENPC1 | t(4;9)(q13;q34) | CENPC1-ABL1 | YES | [1] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms |
ETV6 | t(9;12)(q34;p13) | ETV6-ABL1 | NO | [2] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
FOXP1 | t(3;9)(p13;q34) | FOXP1-ABL1 on der(3) | YES | [3] | |||
LSM14A | t(9;19)(q34;q13.1) | LSM14A-ABL1 on der(19) | YES | [1] | |||
NUP153 | t(6;9)(p22.3;q34) | NUP153-ABL1 on der(6) | YES | [1] | |||
NUP214 | dup(9)(q34.1q34.1) | NUP214-ABL1 | NO | [4] | Tandem duplication (~370 kb) detectable by CMA | ||
RANBP2 | t(2;9)(q12.3;q34) | RANBP-ABL1 on der(2) | YES | [5] | |||
RCSD1 | t(1;9)(q24.2;q34) | RCSD1-ABL1 on der(1) | YES | [6] | |||
SFPQ | t(1;9)(p34.3;q34) | SFPQ-ABL1 on der(1) | YES | [7] | |||
SNX1 | t(9;15)(q34;q22.3) | SNX1-ABL1 on der(15) | YES | [8] | |||
SNX2 | t(5;9)(q23.2;q34) | SNX2-ABL1 on der(5) | YES | [9] | |||
ZMIZ1 | t(9;10)(q34;q22.3) | ZMIZ1-ABL1 on der(10) | YES | [10] | |||
ABL2
(1q25.2) |
PAG1 | t(1;8)(q25.2;q21.1) | PAG1-ABL2 on der(1) | YES | [5] | ||
RCSD1 | 1q24.2q25.2 rearrangement | RCSD1-ABL2 | NO | [11] | On the same chromosome arm; however, a simple deletion cannot cause the fusion due to the orientation of genes | ||
ZC3HAV1 | t(1;7)(q25.2;q34) | ZC3HAV1-ABL2 on der(1) | YES | [12] | |||
CRLF2
(Xp22.3 & Yp11.3) |
IGH | t(X;14)(p22.3;q32) or
t(Y;14)(p11.3;q32) |
IGH/CRLF2 | NO | [13] [5] | ||
P2RY8 | del(X)(p22.3p22.3) or del(Y)(p11.3p11.3) | P2RY8-CRLF2 | NO | [13] [5] | |||
CSF1R
(5q32) |
MEF2D | t(1;5)(q22;q32) | MEF2D-CSF1R on der(5) | YES | [14] | ||
SSBP2 | 5q14.1q32 rearrangement | SSBP2-CSF1R | YES | [1] | On the same chromosome arm; however, a simple deletion cannot cause the fusion due to the orientation of genes | ||
TBL1XR1 | t(3;5)(q26.3;q32) | TBL1XR1-CSF1R on der(5) | YES | [1] | |||
DGKH (13q14.1) | ZFAND3 | t(6;13)(p21.2;q14.1) | ZFAND3-DGKH | YES | [5] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | |
EPOR (19p13.2) | IGH | ins(14;19)(q32;p13.2p13.2) | IGH/EPOR | Cryptic insertion | [15] | ||
IGK | ins(2;19)(p11.2;p13.2p13.2) | IGK/EPOR | Cryptic insertion | [15] | |||
LAIR1 | inv(19)(p13.2q13.42) | LAIR1-EPOR | NO | [15] | Inversion of chromosome 19 juxtaposes EPOR to the upstream region of LAIR1 | ||
THADA | t(2;19)(p21;p13.2) | THADA-EPOR | YES | [8] | |||
IL2RB (22q12.3) | MYH9 | 22q12.3 rearrangement | MYH9-IL2RB | NO | [5] | On the same chromosome arm; however, a simple deletion cannot cause the fusion due to the orientation of genes | |
JAK2
(9p24.1) |
ATF7IP | t(9;12)(p24.1;p13.1) | ATF7IP-JAK2 on der(9) | NO | [5] [16] | ||
BCR | t(9;22)(p24.1;q11.2) | BCR-JAK2 | ? YES | [17] | Seen also in myeloproliferative neoplasms. Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
EBF1 | t(5;9)(q33.3;p24.1) | EBF1-JAK2 on der(9) | NO (SUBTLE) | [18] | |||
ETV6 | t(9;12)(p24.1;p13.2) | ETV6-JAK2 on der(9) | NO (SUBTLE) | [19][20] | |||
GOLGA5 | t(9;14)(p24.1;q32.1) | GOLGA5-JAK2 | NO (SUBTLE) | [21] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
HMBOX1 | t(8;9)(p21.1;p24.1) | HMBOX1-JAK2 on der(9) | YES | [22] | |||
OFD1 | t(X;9)(p22.2;p24.1) | OFD1-JAK2 on der(9) | NO (SUBTLE) | [23] | |||
PAX5 | inv(9)(p13.2p24.1) | PAX5-JAK2 | YES | [24] | An inversion is required as genes are oriented in opposite directions | ||
PCM1 | t(8;9)(p22;p24.1) | PCM1-JAK2 on der(9) | YES (SUBTLE) | [8] | Seen also in myeloid/lymphoid neoplasms with eosinophilia | ||
PPFIBP1 | t(9;12)(p24.1;p11.2) | PPFIBP1-JAK2 on der(9) | YES | [8] | |||
RFX3 | inv(9)(p24.1p24.2) | RFX3-JAK2 | NO | [1] | An inversion is required as genes are oriented in opposite directions | ||
SMU1 | inv(9)(p21.1p24.1) | SMU1-JAK2 | NO | [22] | An inversion is required as genes are oriented in opposite directions | ||
SNX29 | t(9;16)(p24.1;p13.1) | SNX29-JAK2 on der(9) | YES | [22] | |||
SPAG9 | t(9;17)(p24.1;q21.3) | SPAG9-JAK2 on der(9) | YES | [25] | |||
SSBP2 | t(5;9)(q14.1;p24.1) | SSBP2-JAK2 on der(9) | YES | [26] | |||
STRN3 | t(9;14)(p24.1;q12) | STRN3-JAK2 on der(9) | YES | [27] | |||
TERF2 | t(9;16)(p24.1;q22.1) | TERF2-JAK2 on der(9) | YES | [28] | |||
TPR | t(1;9)(q31.1;p24.1) | TPR-JAK2 on der(9) | YES | [5] | |||
USP25 | t(9;21)(p24.1;q21.1) | USP25-JAK2 | ? YES | [1] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
ZBTB46 | t(9;20)(p24.1;q13.3) | ZBTB46-JAK2 on der(9) | NO | [8] | |||
ZNF274 | t(9;19)(p24.1;q13.4) | ZNF274-JAK2 | NO | [1] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
ZNF340 | t(9;20)(p24.1;q13.3) | ZNF340-JAK2 on der(9) | NO | [8] | |||
PDGFRA
(4q12) |
FIP1L1 | del(4)(q12q12) | FIP1L1-PDGFRA | NO | [22] | Interstitial deletion. Seen also in myeloid/lymphoid neoplasms with eosinophilia | |
PDGFRB (5q32) | ATF7IP | t(5;12)(q32;p13.1) | ATF7IP-PDGFRB on der(5) | YES | [29][30] [31] | ||
EBF1 | del(5)(q32q33.3) | EBF1-PDGFRB | NO | [32] | Interstitial deletion | ||
ETV6 | t(5;12)(q32;p13.2) | ETV6-PDGFRB on der(5) | YES | [8] | |||
SNX29 | t(5;16)(q32;p13.1) | SNX29-PDGFRB on der(5) | YES | [8] | |||
SSBP2 | t(5;5)(q14.1;q32) | SSBP2-PDGFRB | ? YES | [8] | On the same chromosome arm; however, a simple deletion cannot cause the fusion due to the orientation of genes | ||
TNIP1 | del(5)(q32q33.1) | TNIP1-PDGFRB | NO | [8] | Interstitial deletion. Seen also in myeloid/lymphoid neoplasms with eosinophilia | ||
ZEB2 | t(2;5)(q22.3;q32) | ZEB2-PDGFRB on der(5) | YES | [5] | |||
ZMYND8 | t(5;20)(q32;q13.1) | ZMYND8-PDGFRB on der(5) | YES | [1] | |||
PTK2B (8p21.2) | KDM6A | t(X;8)(p11.3;p21.2) | KDM6A-PTK2B on der(8) | YES | [5] | ||
STAG2 | t(X;8)(q25;p21.2) | STAG2-PTK2B | YES | [5] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
TMEM2 | t(8;9)(p21.2;q21.1) | TMEM2-PTK2B on der(8) | YES | [8] | |||
TYK2 (19p13.2) | MYB | t(6;19)(q23.3;p13.2) | MYB-TYK2 on der(6) | YES | [18] | ||
SMARCA4 | inv(19)(p13.2p13.2) | SMARCA4-TYK2 | NO | [8] | |||
ZNF340 | t(19;20)(p13.2;q13.3) | ZNF340-TYK2 | NO | [8] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
ZNF384-rearranged B-ALL | ZNF384 (12p13.3) | ARID1B | t(6;12)(q25.3;p13.3) | ARID1B-ZNF384 on der(6) | YES (subtle) | [33] | |
BMP2K | t(4;12)(q21.2;p13.3) | BMP2K-ZNF384 on der(4) | YES | [34] | |||
CREBBP | t(12;16)(p13.3;p13.3) | CREBBP-ZNF384 on der(16) | NO | [35] [34] | |||
EP300 | t(12;22)(p13.3;q13.2) | EP300-ZNF384 on der(22) | NO | [36] | |||
EWSR1 | t(12;22)(p13.3;q12.2) | EWSR1-ZNF384 on der(22) | YES (subtle) | [37] | |||
SMARCA2 | t(9;12)(p24.3;p13.3) | SMARCA2-ZNF384 | No | [14] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
SYNRG | t(12;17)(p13.3;q12) | SYNGR-ZNF384 | YES | [34] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
TAF15 | t(12;17)(p13.3;q12) | TAF15-ZNF384 on der(17) | YES | [38] | |||
TCF3 | t(12;19)(p13.3;p13.3) | TCF3-ZNF384 on der(19) | NO | [34] | |||
MEF2D-rearranged B-ALL | MEF2D
(1q22) |
BCL9 | inv(1)(q21.2q22) | MEF2D-BCL9 | No | [39] [14] [35] | |
CSF1R | t(1;5)(q22;q32) | MEF2D-CSF1R on der(5) | YES | [14] | |||
FOXJ2 | t(1;12)(q22;p13.3) | MEF2D-FOXJ2 on der(12) | YES | [14] | |||
HNRNPH1 | t(1;5)(q22;q35.3) | MEF2D-HNRNPH1 on der(5) | YES | [14] | |||
HNRNPUL1 | t(1;19)(q22;q13.2) | MEF2D-HNRNPUL1 | ? YES | [40] | Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms | ||
SS18 | t(1;18)(q22;q11.2) | MEF2D-SS18 on der(18) | YES | [14] |
Reference
1. Akkari, Yassmine M. N.; et al. (2020-05). "Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia". Cancer Genetics. 243: 52–72. doi:10.1016/j.cancergen.2020.03.001. ISSN 2210-7762. PMID 32302940.
- ↑ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Reshmi, Shalini C.; et al. (2017-06-22). "Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group". Blood. 129 (25): 3352–3361. doi:10.1182/blood-2016-12-758979. ISSN 1528-0020. PMC 5482101. PMID 28408464.
- ↑ Zaliova, Marketa; et al. (2016-09). "Characterization of leukemias with ETV6-ABL1 fusion". Haematologica. 101 (9): 1082–1093. doi:10.3324/haematol.2016.144345. ISSN 1592-8721. PMC 5060025. PMID 27229714. Check date values in:
|date=
(help) - ↑ Ernst, Thomas; et al. (2011-04). "Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia". British Journal of Haematology. 153 (1): 43–46. doi:10.1111/j.1365-2141.2010.08457.x. ISSN 1365-2141. PMID 21391972. Check date values in:
|date=
(help) - ↑ Duployez, Nicolas; et al. (2016-04). "NUP214-ABL1 fusion defines a rare subtype of B-cell precursor acute lymphoblastic leukemia that could benefit from tyrosine kinase inhibitors". Haematologica. 101 (4): e133–134. doi:10.3324/haematol.2015.136499. ISSN 1592-8721. PMC 5004396. PMID 26681761. Check date values in:
|date=
(help) - ↑ 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 Roberts, Kathryn G.; et al. (2014-09-11). "Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia". The New England Journal of Medicine. 371 (11): 1005–1015. doi:10.1056/NEJMoa1403088. ISSN 1533-4406. PMC 4191900. PMID 25207766.
- ↑ Collette, Y.; et al. (2015-03-13). "Drug response profiling can predict response to ponatinib in a patient with t(1;9)(q24;q34)-associated B-cell acute lymphoblastic leukemia". Blood Cancer Journal. 5: e292. doi:10.1038/bcj.2015.13. ISSN 2044-5385. PMC 4382656. PMID 25768406.
- ↑ Sheng, Guangying; et al. (2017). "t(1;9)(p34;q34)/SFPQ-ABL1 Fusion in a Patient with Ph-Like Common B-Cell Acute Lymphoblastic Leukemia". Acta Haematologica. 137 (1): 40–43. doi:10.1159/000452265. ISSN 1421-9662. PMID 27894117.
- ↑ 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 Tasian, Sarah K.; et al. (2017-11-09). "Philadelphia chromosome-like acute lymphoblastic leukemia". Blood. 130 (19): 2064–2072. doi:10.1182/blood-2017-06-743252. ISSN 1528-0020. PMC 5680607. PMID 28972016.
- ↑ Tomita, Osamu; et al. (2014-03). "Sensitivity of SNX2-ABL1 toward tyrosine kinase inhibitors distinct from that of BCR-ABL1". Leukemia Research. 38 (3): 361–370. doi:10.1016/j.leukres.2013.11.017. ISSN 1873-5835. PMID 24367893. Check date values in:
|date=
(help) - ↑ Soler, G.; et al. (2008-06). "Fusion of ZMIZ1 to ABL1 in a B-cell acute lymphoblastic leukaemia with a t(9;10)(q34;q22.3) translocation". Leukemia. 22 (6): 1278–1280. doi:10.1038/sj.leu.2405033. ISSN 1476-5551. PMID 18007576. Check date values in:
|date=
(help) - ↑ Raca, Gordana; et al. (2015-04). "RCSD1-ABL2 fusion resulting from a complex chromosomal rearrangement in high-risk B-cell acute lymphoblastic leukemia". Leukemia & Lymphoma. 56 (4): 1145–1147. doi:10.3109/10428194.2014.951851. ISSN 1029-2403. PMID 25098428. Check date values in:
|date=
(help) - ↑ Tran, Thai Hoa; et al. (2018-03-13). "Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia". Blood Advances. 2 (5): 529–533. doi:10.1182/bloodadvances.2017014704. ISSN 2473-9537. PMC 5851421. PMID 29507076.
- ↑ 13.0 13.1 Jain, Nitin; et al. (2017-02-02). "Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults". Blood. 129 (5): 572–581. doi:10.1182/blood-2016-07-726588. ISSN 1528-0020. PMC 5290985. PMID 27919910.
- ↑ 14.0 14.1 14.2 14.3 14.4 14.5 14.6 Gu, Zhaohui; et al. (2016-11-08). "Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia". Nature Communications. 7: 13331. doi:10.1038/ncomms13331. ISSN 2041-1723. PMC 5105166. PMID 27824051.
- ↑ 15.0 15.1 15.2 Iacobucci, Ilaria; et al. (2016-02-08). "Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia". Cancer Cell. 29 (2): 186–200. doi:10.1016/j.ccell.2015.12.013. ISSN 1878-3686. PMC 4750652. PMID 26859458.
- ↑ Zhang, Qi; et al. (2018-01-30). "Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia". Oncotarget. 9 (8): 8027–8041. doi:10.18632/oncotarget.24261. ISSN 1949-2553. PMC 5814279. PMID 29487712.
- ↑ Griesinger, Frank; et al. (2005-11). "A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia". Genes, Chromosomes & Cancer. 44 (3): 329–333. doi:10.1002/gcc.20235. ISSN 1045-2257. PMID 16001431. Check date values in:
|date=
(help) - ↑ 18.0 18.1 Roberts, Kathryn G.; et al. (2017-09-12). "Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL". Blood Advances. 1 (20): 1657–1671. doi:10.1182/bloodadvances.2017011296. ISSN 2473-9529. PMC 5728345. PMID 29296813.
- ↑ Zhou, Min-hang; et al. (2012-08). "Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia". Annals of Hematology. 91 (8): 1235–1243. doi:10.1007/s00277-012-1431-4. ISSN 1432-0584. PMID 22373549. Check date values in:
|date=
(help) - ↑ Schwaller, Jurg (2012-12). "Modeling ETV6-JAK2-induced leukemia: insights from the zebrafish". Haematologica. 97 (12): 1783–1785. doi:10.3324/haematol.2012.080754. ISSN 1592-8721. PMC 3590083. PMID 23204479. Check date values in:
|date=
(help) - ↑ Ding, Yang Y.; et al. (2018-09). "Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with GOLGA5-JAK2 fusion and induction failure". Haematologica. 103 (9): e427–e431. doi:10.3324/haematol.2018.192088. ISSN 1592-8721. PMC 6119161. PMID 29773603. Check date values in:
|date=
(help) - ↑ 22.0 22.1 22.2 22.3 Roberts, Kathryn G.; et al. (2017-02). "High Frequency and Poor Outcome of Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia in Adults". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 35 (4): 394–401. doi:10.1200/JCO.2016.69.0073. ISSN 1527-7755. PMC 5455698. PMID 27870571. Check date values in:
|date=
(help) - ↑ Yano, Mio; et al. (2015-12). "Identification of novel kinase fusion transcripts in paediatric B cell precursor acute lymphoblastic leukaemia with IKZF1 deletion". British Journal of Haematology. 171 (5): 813–817. doi:10.1111/bjh.13757. ISSN 1365-2141. PMID 26404892. Check date values in:
|date=
(help) - ↑ Schinnerl, Dagmar; et al. (2015-02-19). "The role of the Janus-faced transcription factor PAX5-JAK2 in acute lymphoblastic leukemia". Blood. 125 (8): 1282–1291. doi:10.1182/blood-2014-04-570960. ISSN 1528-0020. PMC 4375719. PMID 25515960.
- ↑ Kawamura, Machiko; et al. (2015-07). "Identification of SPAG9 as a novel JAK2 fusion partner gene in pediatric acute lymphoblastic leukemia with t(9;17)(p24;q21)". Genes, Chromosomes & Cancer. 54 (7): 401–408. doi:10.1002/gcc.22251. ISSN 1098-2264. PMID 25951811. Check date values in:
|date=
(help) - ↑ Poitras, Jennifer L.; et al. (2008-10). "Novel SSBP2-JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre-B acute lymphocytic leukemia". Genes, Chromosomes & Cancer. 47 (10): 884–889. doi:10.1002/gcc.20585. ISSN 1098-2264. PMID 18618714. Check date values in:
|date=
(help) - ↑ Roberts, Kathryn G.; et al. (2012-08-14). "Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia". Cancer Cell. 22 (2): 153–166. doi:10.1016/j.ccr.2012.06.005. ISSN 1878-3686. PMC 3422513. PMID 22897847.
- ↑ Steeghs, Elisabeth M. P.; et al. (2017-10-27). "JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia". Oncotarget. 8 (52): 89923–89938. doi:10.18632/oncotarget.21027. ISSN 1949-2553. PMC 5685720. PMID 29163799.
- ↑ Kobayashi, Kenichiro; et al. (2014-06). "ATF7IP as a novel PDGFRB fusion partner in acute lymphoblastic leukaemia in children". British Journal of Haematology. 165 (6): 836–841. doi:10.1111/bjh.12834. ISSN 1365-2141. PMID 24628626. Check date values in:
|date=
(help) - ↑ Ishibashi, Takeshi; et al. (2016-03). "Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells". Experimental Hematology. 44 (3): 177–188.e5. doi:10.1016/j.exphem.2015.11.009. ISSN 1873-2399. PMID 26703895. Check date values in:
|date=
(help) - ↑ Zhang, Ge; et al. (2017-11-14). "Acute Lymphoblastic Leukemia Patient with Variant ATF7IP/PDGFRB Fusion and Favorable Response to Tyrosine Kinase Inhibitor Treatment: A Case Report". The American Journal of Case Reports. 18: 1204–1208. doi:10.12659/ajcr.906300. ISSN 1941-5923. PMC 5700447. PMID 29133777.
- ↑ Schwab, Claire; et al. (2016-05-05). "EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications". Blood. 127 (18): 2214–2218. doi:10.1182/blood-2015-09-670166. ISSN 1528-0020. PMID 26872634.
- ↑ Shago, Mary; et al. (2016-11). "Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion". Pediatric Blood & Cancer. 63 (11): 1915–1921. doi:10.1002/pbc.26116. ISSN 1545-5017. PMID 27392123. Check date values in:
|date=
(help) - ↑ 34.0 34.1 34.2 34.3 Hirabayashi, Shinsuke; et al. (2017-01). "ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype". Haematologica. 102 (1): 118–129. doi:10.3324/haematol.2016.151035. ISSN 1592-8721. PMC 5210242. PMID 27634205. Check date values in:
|date=
(help) - ↑ 35.0 35.1 Liu, Yuan-Fang; et al. (2016-06). "Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia". EBioMedicine. 8: 173–183. doi:10.1016/j.ebiom.2016.04.038. ISSN 2352-3964. PMC 4919728. PMID 27428428. Check date values in:
|date=
(help) - ↑ Gocho, Y.; et al. (2015-12). "A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia". Leukemia. 29 (12): 2445–2448. doi:10.1038/leu.2015.111. ISSN 1476-5551. PMID 25943178. Check date values in:
|date=
(help) - ↑ Martini, Alessandra; et al. (2002-10-01). "Recurrent rearrangement of the Ewing's sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia". Cancer Research. 62 (19): 5408–5412. ISSN 0008-5472. PMID 12359745.
- ↑ Nyquist, Kaja Beate; et al. (2011-03). "Identification of the TAF15-ZNF384 fusion gene in two new cases of acute lymphoblastic leukemia with a t(12;17)(p13;q12)". Cancer Genetics. 204 (3): 147–152. doi:10.1016/j.cancergen.2011.01.003. ISSN 2210-7762. PMID 21504714. Check date values in:
|date=
(help) - ↑ Suzuki, Kyogo; et al. (2016-10-01). "MEF2D-BCL9 Fusion Gene Is Associated With High-Risk Acute B-Cell Precursor Lymphoblastic Leukemia in Adolescents". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 34 (28): 3451–3459. doi:10.1200/JCO.2016.66.5547. ISSN 1527-7755. PMID 27507882.
- ↑ Ohki, Kentaro; et al. (2019-01). "Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion". Haematologica. 104 (1): 128–137. doi:10.3324/haematol.2017.186320. ISSN 1592-8721. PMC 6312004. PMID 30171027. Check date values in:
|date=
(help)