B-ALL Tables: Prognostic Genomic Abnormalities and Recurrent Gene Fusions

From Compendium of Cancer Genome Aberrations
Revision as of 10:50, 26 July 2021 by Jennelleh (talk | contribs) (Jennelleh moved page B-ALL table to B-ALL Tables: Prognostic Genomic Abnormalities and Recurrent Gene Fusions without leaving a redirect: Final name)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Table 1 - Prevalence and prognosis of B-ALL genomic abnormalities in the pediatric and adult population for all categories reported to date. Of the Ph-like category, only CRLF2 and ABL1-class rearrangements are indicated. Table derived from Akkari et al., 2020 [PMID 32302940] with permission from Cancer Genetics. All percentages are approximate.

Percentage of B-ALL Cases
Genomic abnormality Pediatric Adult Prognosis
t(12;21)(p13;q22); ETV6-RUNX1* 25% 3% Favorable
Hyperdiploidy* 25% 5-7% Favorable
t(9;22)(q34;q11.2); BCR-ABL1* 2-4% 25-30% Poor (outcome may improve with TKI)
CRLF2 (PAR1, Xp22.33/Yp11.2) (Ph-like) 5% 20% Poor
ABL-Class fusions (Ph-like) 3-5% 2-3% Poor (outcome may improve with TKI)
KMT2A (11q23) rearrangements* 5% 10% Poor
t(1;19)(q23;p13.3); TCF3-PBX1* 5% 3% Favorable
TCF3 (19p13.3) rearrangements (excluding ZNF384) >1% >1% Extremely Poor
Hypodiploidy* 1-2% 15% Poor
dic(9;12)(p13;p13) 1% Rare Favorable
dic(9:20)(p13;q11) 2% 1% Favorable
t(4;14)(q35.2;q32); IGH/DUX4 5-9% 5% Favorable
t(5;14)(q31.1;q32.1); IGH/IL3* 1% 1% Unknown
ZNF384 (12p13.31) rearrangements 1-5% 2-7% Favorable
iAMP21 (RUNX1)* 2% Rare Poor
IKZF1 deletions 15-20% 25-30% Poor except in combination with ERG del

*indicates 2016 WHO entities including provisional categories.


Table 2 - Gene fusions reported in Ph-like B-ALL and other new B-ALL molecular subtypes (Literature Review). Table derived from Akkari et al., 2020 [PMID 32302940] with permission from Cancer Genetics.

Subtype 3’ Partner 5’ Partner Chromosome rearrangement Gene fusion Visible by G-banding References Comment
Ph-like

B-ALL

ABL1

(9q34)

CENPC1 t(4;9)(q13;q34) CENPC1-ABL1 YES [1] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
ETV6 t(9;12)(q34;p13) ETV6-ABL1 NO [2] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
FOXP1 t(3;9)(p13;q34) FOXP1-ABL1 on der(3) YES [3]
LSM14A t(9;19)(q34;q13.1) LSM14A-ABL1 on der(19) YES [1]
NUP153 t(6;9)(p22.3;q34) NUP153-ABL1 on der(6) YES [1]
NUP214 dup(9)(q34.1q34.1) NUP214-ABL1 NO [4] Tandem duplication (~370 kb) detectable by CMA
RANBP2 t(2;9)(q12.3;q34) RANBP-ABL1 on der(2) YES [5]
RCSD1 t(1;9)(q24.2;q34) RCSD1-ABL1 on der(1) YES [6]
SFPQ t(1;9)(p34.3;q34) SFPQ-ABL1 on der(1) YES [7]
SNX1 t(9;15)(q34;q22.3) SNX1-ABL1 on der(15) YES [8]
SNX2 t(5;9)(q23.2;q34) SNX2-ABL1 on der(5) YES [9]
ZMIZ1 t(9;10)(q34;q22.3) ZMIZ1-ABL1 on der(10) YES [10]
ABL2

(1q25.2)

PAG1 t(1;8)(q25.2;q21.1) PAG1-ABL2 on der(1) YES [5]
RCSD1 1q24.2q25.2 rearrangement RCSD1-ABL2 NO [11] On the same chromosome arm; however, a simple deletion cannot cause the fusion due to the orientation of genes
ZC3HAV1 t(1;7)(q25.2;q34) ZC3HAV1-ABL2 on der(1) YES [12]
CRLF2

(Xp22.3 & Yp11.3)

IGH t(X;14)(p22.3;q32) or

t(Y;14)(p11.3;q32)

IGH/CRLF2 NO [13] [5]
P2RY8 del(X)(p22.3p22.3) or del(Y)(p11.3p11.3) P2RY8-CRLF2 NO [13] [5]
CSF1R

(5q32)

MEF2D t(1;5)(q22;q32) MEF2D-CSF1R on der(5) YES [14]
SSBP2 5q14.1q32 rearrangement SSBP2-CSF1R YES [1] On the same chromosome arm; however, a simple deletion cannot cause the fusion due to the orientation of genes
TBL1XR1 t(3;5)(q26.3;q32) TBL1XR1-CSF1R on der(5) YES [1]
DGKH (13q14.1) ZFAND3 t(6;13)(p21.2;q14.1) ZFAND3-DGKH YES [5] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
EPOR (19p13.2) IGH ins(14;19)(q32;p13.2p13.2) IGH/EPOR Cryptic insertion [15]
IGK ins(2;19)(p11.2;p13.2p13.2) IGK/EPOR Cryptic insertion [15]
LAIR1 inv(19)(p13.2q13.42) LAIR1-EPOR NO [15] Inversion of chromosome 19 juxtaposes EPOR to the upstream region of LAIR1
THADA t(2;19)(p21;p13.2) THADA-EPOR YES [8]
IL2RB (22q12.3) MYH9 22q12.3 rearrangement MYH9-IL2RB NO [5] On the same chromosome arm; however, a simple deletion cannot cause the fusion due to the orientation of genes
JAK2

(9p24.1)

ATF7IP t(9;12)(p24.1;p13.1) ATF7IP-JAK2 on der(9) NO [5] [16]
BCR t(9;22)(p24.1;q11.2) BCR-JAK2 ? YES [17] Seen also in myeloproliferative neoplasms. Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
EBF1 t(5;9)(q33.3;p24.1) EBF1-JAK2 on der(9) NO (SUBTLE) [18]
ETV6 t(9;12)(p24.1;p13.2) ETV6-JAK2 on der(9) NO (SUBTLE) [19][20]
GOLGA5 t(9;14)(p24.1;q32.1) GOLGA5-JAK2 NO (SUBTLE) [21] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
HMBOX1 t(8;9)(p21.1;p24.1) HMBOX1-JAK2 on der(9) YES [22]
OFD1 t(X;9)(p22.2;p24.1) OFD1-JAK2 on der(9) NO (SUBTLE) [23]
PAX5 inv(9)(p13.2p24.1) PAX5-JAK2 YES [24] An inversion is required as genes are oriented in opposite directions
PCM1 t(8;9)(p22;p24.1) PCM1-JAK2 on der(9) YES (SUBTLE) [8] Seen also in myeloid/lymphoid neoplasms with eosinophilia
PPFIBP1 t(9;12)(p24.1;p11.2) PPFIBP1-JAK2 on der(9) YES [8]
RFX3 inv(9)(p24.1p24.2) RFX3-JAK2 NO [1] An inversion is required as genes are oriented in opposite directions
SMU1 inv(9)(p21.1p24.1) SMU1-JAK2 NO [22] An inversion is required as genes are oriented in opposite directions
SNX29 t(9;16)(p24.1;p13.1) SNX29-JAK2 on der(9) YES [22]
SPAG9 t(9;17)(p24.1;q21.3) SPAG9-JAK2 on der(9) YES [25]
SSBP2 t(5;9)(q14.1;p24.1) SSBP2-JAK2 on der(9) YES [26]
STRN3 t(9;14)(p24.1;q12) STRN3-JAK2 on der(9) YES [27]
TERF2 t(9;16)(p24.1;q22.1) TERF2-JAK2 on der(9) YES [28]
TPR t(1;9)(q31.1;p24.1) TPR-JAK2 on der(9) YES [5]
USP25 t(9;21)(p24.1;q21.1) USP25-JAK2 ? YES [1] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
ZBTB46 t(9;20)(p24.1;q13.3) ZBTB46-JAK2 on der(9) NO [8]
ZNF274 t(9;19)(p24.1;q13.4) ZNF274-JAK2 NO [1] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
ZNF340 t(9;20)(p24.1;q13.3) ZNF340-JAK2 on der(9) NO [8]
PDGFRA

(4q12)

FIP1L1 del(4)(q12q12) FIP1L1-PDGFRA NO [22] Interstitial deletion. Seen also in myeloid/lymphoid neoplasms with eosinophilia
PDGFRB (5q32) ATF7IP t(5;12)(q32;p13.1) ATF7IP-PDGFRB on der(5) YES [29][30] [31]
EBF1 del(5)(q32q33.3) EBF1-PDGFRB NO [32] Interstitial deletion
ETV6 t(5;12)(q32;p13.2) ETV6-PDGFRB on der(5) YES [8]
SNX29 t(5;16)(q32;p13.1) SNX29-PDGFRB on der(5) YES [8]
SSBP2 t(5;5)(q14.1;q32) SSBP2-PDGFRB ? YES [8] On the same chromosome arm; however, a simple deletion cannot cause the fusion due to the orientation of genes
TNIP1 del(5)(q32q33.1) TNIP1-PDGFRB NO [8] Interstitial deletion. Seen also in myeloid/lymphoid neoplasms with eosinophilia
ZEB2 t(2;5)(q22.3;q32) ZEB2-PDGFRB on der(5) YES [5]
ZMYND8 t(5;20)(q32;q13.1) ZMYND8-PDGFRB on der(5) YES [1]
PTK2B (8p21.2) KDM6A t(X;8)(p11.3;p21.2) KDM6A-PTK2B on der(8) YES [5]
STAG2 t(X;8)(q25;p21.2) STAG2-PTK2B YES [5] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
TMEM2 t(8;9)(p21.2;q21.1) TMEM2-PTK2B on der(8) YES [8]
TYK2 (19p13.2) MYB t(6;19)(q23.3;p13.2) MYB-TYK2 on der(6) YES [18]
SMARCA4 inv(19)(p13.2p13.2) SMARCA4-TYK2 NO [8]
ZNF340 t(19;20)(p13.2;q13.3) ZNF340-TYK2 NO [8] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
ZNF384-rearranged B-ALL ZNF384 (12p13.3)   ARID1B t(6;12)(q25.3;p13.3) ARID1B-ZNF384  on der(6) YES (subtle) [33]
BMP2K t(4;12)(q21.2;p13.3) BMP2K-ZNF384  on der(4) YES [34]
CREBBP t(12;16)(p13.3;p13.3) CREBBP-ZNF384 on der(16) NO [35] [34]
EP300 t(12;22)(p13.3;q13.2) EP300-ZNF384 on der(22) NO [36]
EWSR1 t(12;22)(p13.3;q12.2) EWSR1-ZNF384 on der(22) YES (subtle) [37]
SMARCA2 t(9;12)(p24.3;p13.3) SMARCA2-ZNF384 No [14] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
SYNRG t(12;17)(p13.3;q12) SYNGR-ZNF384 YES [34] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
TAF15 t(12;17)(p13.3;q12) TAF15-ZNF384 on der(17) YES [38]
TCF3 t(12;19)(p13.3;p13.3) TCF3-ZNF384 on der(19) NO [34]
MEF2D-rearranged B-ALL MEF2D

(1q22)

BCL9 inv(1)(q21.2q22) MEF2D-BCL9 No [39] [14] [35]
CSF1R t(1;5)(q22;q32) MEF2D-CSF1R on der(5) YES [14]
FOXJ2 t(1;12)(q22;p13.3) MEF2D-FOXJ2 on der(12) YES [14]
HNRNPH1 t(1;5)(q22;q35.3) MEF2D-HNRNPH1 on der(5) YES [14]
HNRNPUL1 t(1;19)(q22;q13.2) MEF2D-HNRNPUL1 ? YES [40] Requires complex rearrangement due to incompatible orientation of genes with respect to chromosome arms
SS18 t(1;18)(q22;q11.2) MEF2D-SS18 on der(18) YES [14]

Reference

1. Akkari, Yassmine M. N.; et al. (2020-05). "Evidence-based review of genomic aberrations in B-lymphoblastic leukemia/lymphoma: Report from the cancer genomics consortium working group for lymphoblastic leukemia". Cancer Genetics. 243: 52–72. doi:10.1016/j.cancergen.2020.03.001. ISSN 2210-7762. PMID 32302940.

  1. 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Reshmi, Shalini C.; et al. (2017-06-22). "Targetable kinase gene fusions in high-risk B-ALL: a study from the Children's Oncology Group". Blood. 129 (25): 3352–3361. doi:10.1182/blood-2016-12-758979. ISSN 1528-0020. PMC 5482101. PMID 28408464.
  2. Zaliova, Marketa; et al. (2016-09). "Characterization of leukemias with ETV6-ABL1 fusion". Haematologica. 101 (9): 1082–1093. doi:10.3324/haematol.2016.144345. ISSN 1592-8721. PMC 5060025. PMID 27229714. Check date values in: |date= (help)
  3. Ernst, Thomas; et al. (2011-04). "Identification of FOXP1 and SNX2 as novel ABL1 fusion partners in acute lymphoblastic leukaemia". British Journal of Haematology. 153 (1): 43–46. doi:10.1111/j.1365-2141.2010.08457.x. ISSN 1365-2141. PMID 21391972. Check date values in: |date= (help)
  4. Duployez, Nicolas; et al. (2016-04). "NUP214-ABL1 fusion defines a rare subtype of B-cell precursor acute lymphoblastic leukemia that could benefit from tyrosine kinase inhibitors". Haematologica. 101 (4): e133–134. doi:10.3324/haematol.2015.136499. ISSN 1592-8721. PMC 5004396. PMID 26681761. Check date values in: |date= (help)
  5. 5.00 5.01 5.02 5.03 5.04 5.05 5.06 5.07 5.08 5.09 5.10 Roberts, Kathryn G.; et al. (2014-09-11). "Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia". The New England Journal of Medicine. 371 (11): 1005–1015. doi:10.1056/NEJMoa1403088. ISSN 1533-4406. PMC 4191900. PMID 25207766.
  6. Collette, Y.; et al. (2015-03-13). "Drug response profiling can predict response to ponatinib in a patient with t(1;9)(q24;q34)-associated B-cell acute lymphoblastic leukemia". Blood Cancer Journal. 5: e292. doi:10.1038/bcj.2015.13. ISSN 2044-5385. PMC 4382656. PMID 25768406.
  7. Sheng, Guangying; et al. (2017). "t(1;9)(p34;q34)/SFPQ-ABL1 Fusion in a Patient with Ph-Like Common B-Cell Acute Lymphoblastic Leukemia". Acta Haematologica. 137 (1): 40–43. doi:10.1159/000452265. ISSN 1421-9662. PMID 27894117.
  8. 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 Tasian, Sarah K.; et al. (2017-11-09). "Philadelphia chromosome-like acute lymphoblastic leukemia". Blood. 130 (19): 2064–2072. doi:10.1182/blood-2017-06-743252. ISSN 1528-0020. PMC 5680607. PMID 28972016.
  9. Tomita, Osamu; et al. (2014-03). "Sensitivity of SNX2-ABL1 toward tyrosine kinase inhibitors distinct from that of BCR-ABL1". Leukemia Research. 38 (3): 361–370. doi:10.1016/j.leukres.2013.11.017. ISSN 1873-5835. PMID 24367893. Check date values in: |date= (help)
  10. Soler, G.; et al. (2008-06). "Fusion of ZMIZ1 to ABL1 in a B-cell acute lymphoblastic leukaemia with a t(9;10)(q34;q22.3) translocation". Leukemia. 22 (6): 1278–1280. doi:10.1038/sj.leu.2405033. ISSN 1476-5551. PMID 18007576. Check date values in: |date= (help)
  11. Raca, Gordana; et al. (2015-04). "RCSD1-ABL2 fusion resulting from a complex chromosomal rearrangement in high-risk B-cell acute lymphoblastic leukemia". Leukemia & Lymphoma. 56 (4): 1145–1147. doi:10.3109/10428194.2014.951851. ISSN 1029-2403. PMID 25098428. Check date values in: |date= (help)
  12. Tran, Thai Hoa; et al. (2018-03-13). "Prognostic impact of kinase-activating fusions and IKZF1 deletions in pediatric high-risk B-lineage acute lymphoblastic leukemia". Blood Advances. 2 (5): 529–533. doi:10.1182/bloodadvances.2017014704. ISSN 2473-9537. PMC 5851421. PMID 29507076.
  13. 13.0 13.1 Jain, Nitin; et al. (2017-02-02). "Ph-like acute lymphoblastic leukemia: a high-risk subtype in adults". Blood. 129 (5): 572–581. doi:10.1182/blood-2016-07-726588. ISSN 1528-0020. PMC 5290985. PMID 27919910.
  14. 14.0 14.1 14.2 14.3 14.4 14.5 14.6 Gu, Zhaohui; et al. (2016-11-08). "Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia". Nature Communications. 7: 13331. doi:10.1038/ncomms13331. ISSN 2041-1723. PMC 5105166. PMID 27824051.
  15. 15.0 15.1 15.2 Iacobucci, Ilaria; et al. (2016-02-08). "Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia". Cancer Cell. 29 (2): 186–200. doi:10.1016/j.ccell.2015.12.013. ISSN 1878-3686. PMC 4750652. PMID 26859458.
  16. Zhang, Qi; et al. (2018-01-30). "Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia". Oncotarget. 9 (8): 8027–8041. doi:10.18632/oncotarget.24261. ISSN 1949-2553. PMC 5814279. PMID 29487712.
  17. Griesinger, Frank; et al. (2005-11). "A BCR-JAK2 fusion gene as the result of a t(9;22)(p24;q11.2) translocation in a patient with a clinically typical chronic myeloid leukemia". Genes, Chromosomes & Cancer. 44 (3): 329–333. doi:10.1002/gcc.20235. ISSN 1045-2257. PMID 16001431. Check date values in: |date= (help)
  18. 18.0 18.1 Roberts, Kathryn G.; et al. (2017-09-12). "Oncogenic role and therapeutic targeting of ABL-class and JAK-STAT activating kinase alterations in Ph-like ALL". Blood Advances. 1 (20): 1657–1671. doi:10.1182/bloodadvances.2017011296. ISSN 2473-9529. PMC 5728345. PMID 29296813.
  19. Zhou, Min-hang; et al. (2012-08). "Detection of ETV6 gene rearrangements in adult acute lymphoblastic leukemia". Annals of Hematology. 91 (8): 1235–1243. doi:10.1007/s00277-012-1431-4. ISSN 1432-0584. PMID 22373549. Check date values in: |date= (help)
  20. Schwaller, Jurg (2012-12). "Modeling ETV6-JAK2-induced leukemia: insights from the zebrafish". Haematologica. 97 (12): 1783–1785. doi:10.3324/haematol.2012.080754. ISSN 1592-8721. PMC 3590083. PMID 23204479. Check date values in: |date= (help)
  21. Ding, Yang Y.; et al. (2018-09). "Clinical efficacy of ruxolitinib and chemotherapy in a child with Philadelphia chromosome-like acute lymphoblastic leukemia with GOLGA5-JAK2 fusion and induction failure". Haematologica. 103 (9): e427–e431. doi:10.3324/haematol.2018.192088. ISSN 1592-8721. PMC 6119161. PMID 29773603. Check date values in: |date= (help)
  22. 22.0 22.1 22.2 22.3 Roberts, Kathryn G.; et al. (2017-02). "High Frequency and Poor Outcome of Philadelphia Chromosome-Like Acute Lymphoblastic Leukemia in Adults". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 35 (4): 394–401. doi:10.1200/JCO.2016.69.0073. ISSN 1527-7755. PMC 5455698. PMID 27870571. Check date values in: |date= (help)
  23. Yano, Mio; et al. (2015-12). "Identification of novel kinase fusion transcripts in paediatric B cell precursor acute lymphoblastic leukaemia with IKZF1 deletion". British Journal of Haematology. 171 (5): 813–817. doi:10.1111/bjh.13757. ISSN 1365-2141. PMID 26404892. Check date values in: |date= (help)
  24. Schinnerl, Dagmar; et al. (2015-02-19). "The role of the Janus-faced transcription factor PAX5-JAK2 in acute lymphoblastic leukemia". Blood. 125 (8): 1282–1291. doi:10.1182/blood-2014-04-570960. ISSN 1528-0020. PMC 4375719. PMID 25515960.
  25. Kawamura, Machiko; et al. (2015-07). "Identification of SPAG9 as a novel JAK2 fusion partner gene in pediatric acute lymphoblastic leukemia with t(9;17)(p24;q21)". Genes, Chromosomes & Cancer. 54 (7): 401–408. doi:10.1002/gcc.22251. ISSN 1098-2264. PMID 25951811. Check date values in: |date= (help)
  26. Poitras, Jennifer L.; et al. (2008-10). "Novel SSBP2-JAK2 fusion gene resulting from a t(5;9)(q14.1;p24.1) in pre-B acute lymphocytic leukemia". Genes, Chromosomes & Cancer. 47 (10): 884–889. doi:10.1002/gcc.20585. ISSN 1098-2264. PMID 18618714. Check date values in: |date= (help)
  27. Roberts, Kathryn G.; et al. (2012-08-14). "Genetic alterations activating kinase and cytokine receptor signaling in high-risk acute lymphoblastic leukemia". Cancer Cell. 22 (2): 153–166. doi:10.1016/j.ccr.2012.06.005. ISSN 1878-3686. PMC 3422513. PMID 22897847.
  28. Steeghs, Elisabeth M. P.; et al. (2017-10-27). "JAK2 aberrations in childhood B-cell precursor acute lymphoblastic leukemia". Oncotarget. 8 (52): 89923–89938. doi:10.18632/oncotarget.21027. ISSN 1949-2553. PMC 5685720. PMID 29163799.
  29. Kobayashi, Kenichiro; et al. (2014-06). "ATF7IP as a novel PDGFRB fusion partner in acute lymphoblastic leukaemia in children". British Journal of Haematology. 165 (6): 836–841. doi:10.1111/bjh.12834. ISSN 1365-2141. PMID 24628626. Check date values in: |date= (help)
  30. Ishibashi, Takeshi; et al. (2016-03). "Ph-like ALL-related novel fusion kinase ATF7IP-PDGFRB exhibits high sensitivity to tyrosine kinase inhibitors in murine cells". Experimental Hematology. 44 (3): 177–188.e5. doi:10.1016/j.exphem.2015.11.009. ISSN 1873-2399. PMID 26703895. Check date values in: |date= (help)
  31. Zhang, Ge; et al. (2017-11-14). "Acute Lymphoblastic Leukemia Patient with Variant ATF7IP/PDGFRB Fusion and Favorable Response to Tyrosine Kinase Inhibitor Treatment: A Case Report". The American Journal of Case Reports. 18: 1204–1208. doi:10.12659/ajcr.906300. ISSN 1941-5923. PMC 5700447. PMID 29133777.
  32. Schwab, Claire; et al. (2016-05-05). "EBF1-PDGFRB fusion in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL): genetic profile and clinical implications". Blood. 127 (18): 2214–2218. doi:10.1182/blood-2015-09-670166. ISSN 1528-0020. PMID 26872634.
  33. Shago, Mary; et al. (2016-11). "Frequency and outcome of pediatric acute lymphoblastic leukemia with ZNF384 gene rearrangements including a novel translocation resulting in an ARID1B/ZNF384 gene fusion". Pediatric Blood & Cancer. 63 (11): 1915–1921. doi:10.1002/pbc.26116. ISSN 1545-5017. PMID 27392123. Check date values in: |date= (help)
  34. 34.0 34.1 34.2 34.3 Hirabayashi, Shinsuke; et al. (2017-01). "ZNF384-related fusion genes define a subgroup of childhood B-cell precursor acute lymphoblastic leukemia with a characteristic immunotype". Haematologica. 102 (1): 118–129. doi:10.3324/haematol.2016.151035. ISSN 1592-8721. PMC 5210242. PMID 27634205. Check date values in: |date= (help)
  35. 35.0 35.1 Liu, Yuan-Fang; et al. (2016-06). "Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia". EBioMedicine. 8: 173–183. doi:10.1016/j.ebiom.2016.04.038. ISSN 2352-3964. PMC 4919728. PMID 27428428. Check date values in: |date= (help)
  36. Gocho, Y.; et al. (2015-12). "A novel recurrent EP300-ZNF384 gene fusion in B-cell precursor acute lymphoblastic leukemia". Leukemia. 29 (12): 2445–2448. doi:10.1038/leu.2015.111. ISSN 1476-5551. PMID 25943178. Check date values in: |date= (help)
  37. Martini, Alessandra; et al. (2002-10-01). "Recurrent rearrangement of the Ewing's sarcoma gene, EWSR1, or its homologue, TAF15, with the transcription factor CIZ/NMP4 in acute leukemia". Cancer Research. 62 (19): 5408–5412. ISSN 0008-5472. PMID 12359745.
  38. Nyquist, Kaja Beate; et al. (2011-03). "Identification of the TAF15-ZNF384 fusion gene in two new cases of acute lymphoblastic leukemia with a t(12;17)(p13;q12)". Cancer Genetics. 204 (3): 147–152. doi:10.1016/j.cancergen.2011.01.003. ISSN 2210-7762. PMID 21504714. Check date values in: |date= (help)
  39. Suzuki, Kyogo; et al. (2016-10-01). "MEF2D-BCL9 Fusion Gene Is Associated With High-Risk Acute B-Cell Precursor Lymphoblastic Leukemia in Adolescents". Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology. 34 (28): 3451–3459. doi:10.1200/JCO.2016.66.5547. ISSN 1527-7755. PMID 27507882.
  40. Ohki, Kentaro; et al. (2019-01). "Clinical and molecular characteristics of MEF2D fusion-positive B-cell precursor acute lymphoblastic leukemia in childhood, including a novel translocation resulting in MEF2D-HNRNPH1 gene fusion". Haematologica. 104 (1): 128–137. doi:10.3324/haematol.2017.186320. ISSN 1592-8721. PMC 6312004. PMID 30171027. Check date values in: |date= (help)